def _create_renderer(self): """ Creates the renderer instance if not yet available and opens the scenes in mayavi """ if self.active: if self.rendermanager is None: logger.debug('Create a RenderManager instance') self.rendermanager = RenderManager(network=self) else: logger.debug('RenderManager instance already running. This is an error.')
class Network(HasTraits): """ The implementation of the Connectome Networks """ implements(INetwork) # Network ID, from parsed GraphML the graphid networkid = '' # Network name networkname = Str # network name as seen in the TreeView name = Str # Is it an hierarchical network? hierarchical = CBool(False) # TODO: later, also Hypergraph?! # see: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000385 hypergraph = CBool(False) # Directionality of the Network, {True: 'directed', False: 'undirected'} directed = CBool(False) # metadata for the network metadata = Dict # NodeKeys from the parsed GraphML # These are Dict of Dict, all having strings nodekeys = {} # Edgekeys, from parsed GraphML edgekeys = {} # A NetworkX AttrGraph containing all the information graph = Any # Surface containers surfaces = List(ISurfaceContainer) # Surface containers loaded surfaces_loaded = List(ISurfaceContainer) # Volume data volumes = List(IVolume) # Track data tracks = List(ITrackfile) # is this network active, and thus a render manager displayed? active = Bool # the render manager of this network rendermanager = Instance(RenderManager) # DatasourceManager Instance of this network datasourcemanager = Instance(DatasourceManager) # private traits ########### # parent cfile this networks belongs to _parentcfile = Any # filezip of cfile _filezip = DelegatesTo('_parentcfile') # edge parameters for visualization _edge_para = Instance(EdgeParameters) # View traits_view = View( Item('networkname', style = 'readonly'), Item('hierarchical', style = 'simple'), Item('hypergraph', style = 'simple'), Item('directed', style = 'simple'), Item('active', style = 'simple'), title = 'A network', ) def __init__(self, name, src = None, directed = '0', pickled_graph = None, \ hierarchical ='0', hypergraph = '0', graph = None): """ Initializes the network and sets the traits. Parameters ---------- name : string the name of the network src : file handle or StringIO object the source text of the network to parse pickled_graph : NetworkX graph reference to a graph object, src should be None directed : bool Is the network directed? hierarchical : bool Is the network hierarchical? (default: '0') Not implemented yet. hypergraph : bool Is the network a hypergraph? (default: '0') Not implemented yet. """ # initialize the traits self.networkname = name self.directed = int(directed) self.hierarchical = int(hierarchical) self.hypergraph = int(hypergraph) if src is None and not pickled_graph is None: self.load_pickled_graphml(pickled_graph) else: if not src is None: # generates NetworkX Graph self.graph = self.parse_network_graphml(src) elif not graph is None: self.graph = graph else: if self.directed: from networkx import DiGraph self.graph = DiGraph() logger.info("Initialize with empty directed Graph") else: from networkx import Graph self.graph = Graph() logger.info("Initialize with empty undirected Graph") # initializes the weight key of the graph # with the first edgekey if len(self.edgekeys) > 0: edgk = self.edgekeys.keys() if not 'weight' in edgk: self.set_weight_key(edgk[0]) else: # try grabbing first edge from the graph if self.graph.number_of_edges() > 0: it = self.graph.edges_iter(data=True) edg = it.next() if len(edg[2]) > 0: # if it has a weigth key, just leave it edgk = edg[2].keys() if not 'weight' in edgk: self.set_weight_key(edgk[0]) else: pass # logger.error('Cannot set weight key for network : ' + self.networkname) def _name_default(self): return self.networkname def _active_default(self): return False def _active_changed(self , value): if value: n = self.name if ' [Active]' not in n: self.name = "%s [Active]" % n # XXX: do refactor with threaded loading of surfaces # and default spring force layout for graph rendering! # see also TraitsUI Demos: Multi thread demo # load the surface containers data # make a deep copy of the already loaded surface containers import copy self.surfaces = copy.deepcopy(self.surfaces_loaded) for surfcont in self.surfaces: surfcont.load_surface_container() if self.rendermanager is None: self._create_datasourcemanager() self._create_renderer() # if there are no surfaces, initialize # network rendering, but only if dn_positions are given if len(self.surfaces) == 0: logger.debug('No surfaces found. Try to render graph view with dn_position information.') self.rendermanager.datasourcemanager._compute_3DLayout(-1, -1) self.rendermanager.visualize_graph() else: logger.debug('SurfaceContainer found. Try to render 3D View using %s.' % self.surfaces[0].name) if len(self.surfaces[0].surfaces) == 0: logger.debug('Rendering not possible because SurfaceContainer contains no surfaces.') else: logger.debug('Using first surface for rendering.') self.surfaces[0].surfaces[0]._layout_3DView() if not self._parentcfile._workbenchwin is None: #from enthought.pyface.timer.api import do_later from enthought.pyface.api import GUI GUI.invoke_later(self._parentcfile._workbenchwin.status_bar_manager.set, message = '') else: self.name = self.name.replace(' [Active]', '') logger.debug('Close RenderManager scenes') self.rendermanager.close_scenes() logger.debug('All scenes closed.') # FIXME: what is happening in the following? # e.g. for instances. e.g. reset traits? # XXX: this is somehow not correct. do i need to use del # or remove/reset traits? self.rendermanager = None self.datasourcemanager = None self.surfaces = [] def _de_activate(self): """ Toggles the internal state of the activation """ if self.active: self.active = False else: self._parentcfile._workbenchwin.status_bar_manager.message = 'Activating network ...' self.active = True def _edge_parameters(self): """ Dialog to change edge attribute and thresholding """ if self._edge_para is None: self._edge_para = EdgeParameters(self, self.rendermanager.attract.point_scalars_name) self._edge_para.configure_traits() def _create_renderer(self): """ Creates the renderer instance if not yet available and opens the scenes in mayavi """ if self.active: if self.rendermanager is None: logger.debug('Create a RenderManager instance') self.rendermanager = RenderManager(network=self) else: logger.debug('RenderManager instance already running. This is an error.') def _create_datasourcemanager(self): """ Creates the datasource manager instance if not yet available """ if self.active: if self.datasourcemanager is None: logger.debug('Create a DatasourceManager instance') self.datasourcemanager = DatasourceManager(network=self) else: logger.debug('DatasourceManager instance already running. This is an error.') def _render_matrix(self): """ Invokes the connectivity matrix viewer """ # assume the network is activated (i.e. data source generated) # we need the edge parameter instance initialized if self._edge_para is None: self._edge_para = EdgeParameters(self, self.rendermanager.attract.point_scalars_name) logger.debug('Invoke Matrix Viewer...') self.rendermanager.invoke_matrix_viewer() def _trackvis_launch(self): """ Generates scene file and launch Trackvis on the selected nodes """ import tempfile logger.debug('Starting TrackVis ...') # extract selected subgraph selectionlist = self.get_selectiongraph_list() if len(selectionlist) == 0: # message from enthought.traits.ui.message import message message(message = 'No nodes selected for ROI creation!', title = 'Infomessage', buttons = [ 'OK' ], parent = None) tmpgraph = self.graph.subgraph(selectionlist) # extract trackfile temporarily if len(self.tracks) == 0: logger.info('No trackfile found to invoke Trackvis.') return else: # load the first trackfile trackfname = self.tracks[0].load_trackfile_to_file() # find the first valid segmentation volume in the self.volumes list for vol in self.volumes: if vol.segmentation: logger.debug('Found a segmentation volume file. Assume labels are corresponding.') volumefname = vol.load_volume_to_file() break # generate the scene file in the temporary folder tmpscenefile=tempfile.mkstemp(prefix='tmp', suffix='.scene') # generate trackfile generate_scene_file(scenefname=tmpscenefile[1], \ trackfname = trackfname, \ volumefname = volumefname, \ selectiongraph = tmpgraph) # execute trackvis in a thread pref = preference_manager.preferences action = ThreadedTrackvis(tvpath = pref.get('cviewer.plugins.ui.trackvispath'), \ fname = tmpscenefile[1], \ trkfname = trackfname,\ volfname = volumefname) action.start() def add_surface_container(self, surfacecontainer): """ Add a surface container to the loaded list Parameters ---------- surfacecontainer : `ISurfaceContainer` instance a surface container object """ surfacecontainer._networkref = self self.surfaces_loaded.append(surfacecontainer) def add_volume(self, volume): """ Adds a volume to the volumes list Parameters ---------- volume : `IVolume` instance a volume object """ self.volumes.append(volume) def add_trackfile(self, trackfile): """ Adds a trackfile to the tracks list Parameters ---------- trackfile : `ITrackfile` instance a trackfile of type ITrackfile """ self.tracks.append(trackfile) def unselect_all(self): """ Unselects every node in the current network """ if self.datasourcemanager is None: raise Exception('No DatasourceManager. You have to first activate the network and render it.') from numpy import array # get all the nodes graphnodes = self.datasourcemanager._srcobj.relabled_graph.nodes() # and unselect all nodes self.rendermanager._select_nodes(selection_node_array = array(graphnodes)) def select_all(self): """ Selects all nodes in the current network """ if self.datasourcemanager is None: raise Exception('No DatasourceManager. You have to first activate the network and render it.') from numpy import array # get all the nodes graphnodes = self.datasourcemanager._srcobj.relabled_graph.nodes() # and select all nodes self.rendermanager._select_nodes(selection_node_array = array(graphnodes), activate = True) def set_selectiongraph(self, sellist, activate = False): """ Sets the selected nodes in the network to active. Parameters ---------- sellist : array_like a list of nodeids conforming to the NetworkX node id activate : boolean set the selectionlist nodes to activated? """ from numpy import array, int16 graphnodes = self.graph.nodes(data=False) if self.rendermanager is None: raise Exception('No RenderManager. You have to first activate the network and render it.') if len(sellist) == 0: self.unselect_all() return from numpy import array, append tmparr = array([]) for node in sellist: # check if it is a valid graph node id if node in graphnodes: # get the node id as integer j = int(node.lstrip('n'))-1 # extend empty array with node id tmparr = append(tmparr, j) self.rendermanager._select_nodes(selection_node_array = array(tmparr, dtype = int16), activate = activate) def get_selectiongraph_list(self): """ Returns a list of the node ids that were selected in the rendered scene. """ if self.datasourcemanager is None: raise Exception('No DatasourceManager. You have to first activate the network and render it.') import numpy as np sel_list = [] if not self.active: return sel_list selnodesarray = self.datasourcemanager._srcobj.selected_nodes # array with indices where the nodes are selected (==1) idx = np.where(selnodesarray == 1)[0] for i in idx: sel_list.append('n' + str(i + 1)) return sel_list def set_weight_key(self, weight_key = None): """ Sets the weight key in the graph representation of the network. Parameters ---------- weight_key : Str Must be a possible existing edge key """ if not weight_key is None: for u,v,d in self.graph.edges(data=True): self.graph[u][v]['weight']=d[weight_key] return True else: return False def get_matrix(self, weight_key = None): """ Returns the connectivity matrix of the network with the nodes ordered according to their id in the GraphML file. Parameters ---------- weight_key : Str Possible key value of the edges Returns ------- matrix : `Numpy.array` instance The connectivity matrix """ nr_nodes = len(self.graph.nodes()) if not weight_key is None: #FIXME: sanity check if weight_key exists # thanks to Aric Hagberg for u,v,d in self.graph.edges(data=True): self.graph[u][v]['weight']=d[weight_key] nodes = [(lambda nmod:'n'+str(nmod))(node) for node in range(1,nr_nodes + 1)] from networkx import to_numpy_matrix return to_numpy_matrix(self.graph, nodelist = nodes) def toggle_surface(self): """ Toggle the surface for the selected network nodes """ if self.rendermanager is None: raise Exception('No RenderManager. You have to first activate the network and render it.') self.rendermanager._toggle_surface() def show_surface(self): """ Shows the surface for the selected network nodes """ if self.rendermanager is None: raise Exception('No RenderManager. You have to first activate the network and render it.') self.rendermanager._show_surface() def load_pickled_graphml(self, graph): """ Loads a pickled GraphML file Parameters ---------- graph : NetworkX Graph instance A graph instance """ # setting the graph self.graph = graph if self.graph.has_node('n0'): if self.graph.node['n0'].has_key('nodekeys'): # extracting the node keys from the first node self.nodekeys = self.graph.node['n0']['nodekeys'] # extracting the edge keys from the first edge (without explanation) if self.graph.node['n0'].has_key('edgekeys'): self.edgekeys = self.graph.node['n0']['edgekeys'] if self.graph.node['n0'].has_key('graphid'): self.networkid = self.graph.node['n0']['graphid'] # remove node self.graph.remove_node('n0') def _return_default_edgevalue(self, edgekeys, key): """ Looks up if there is a default value defined, otherwise return zero """ if edgekeys[key].has_key('default'): return float(edgekeys[key]['default']) else: return 0.0 def parse_network_graphml(self, path): """ Read network in GraphML format from a path. Parameters ---------- path : string path the the GraphML file Returns ------- graph : NetworkX `Graph` """ import networkx as nx from networkx.utils import _get_fh from lxml import etree # Return a file handle for given path. # Path can be a string or a file handle. # Attempt to uncompress/compress files ending in .gz and .bz2. fh=_get_fh(path,mode='r') tree = etree.parse(fh) # get the root node from parsed lxml root = tree.getroot() # Schema Validation # http://codespeak.net/lxml/validation.html#xmlschema # define the namespace prefixes nsprefix = "{%s}" % root.nsmap[None] nsxlink = "{%s}" % root.nsmap['xlink'] nodekeys = {} edgekeys = {} defaultDirected = [True] # Parse the KEYs for child in root.iterchildren(): if child.tag == (nsprefix+'key'): attribs = child.attrib ddkeys = {} for mchildren in child: if mchildren.tag == (nsprefix+'default'): ddkeys['default'] = mchildren.text elif mchildren.tag == (nsprefix+'desc'): ddkeys['desc'] = mchildren.text if child.attrib['for'] == 'node': # Parse all the node keys # Read in the description and the default (if existing) # dict of dicts for nodes: key1: the id; key2: rest: attr.name, attr.type, desc, default nodekeys[attribs['id']] = {'attr.name' : attribs['attr.name'], \ 'attr.type' : attribs['attr.type']} # add default/desc keys if existing nodekeys[attribs['id']] = ddkeys elif child.attrib['for'] == 'edge': # Parse all the edge keys # Read in the description and the default (if existing) # dict of dicts for edges: key1: the id; key2: rest: attr.name, attr.type, desc, default edgekeys[attribs['id']] = {'attr.name' : attribs['attr.name'], \ 'attr.type' : attribs['attr.type']} # add default/desc keys if existing edgekeys[attribs['id']] = ddkeys else: logger.error("The 'for' attribute of key-tag not known, must be either node or edge") elif child.tag == (nsprefix+'graph'): # start parsing the graph into networkx data structure # create graph depending on (either AttrGraph or AttrDiGraph) # directionality: undirected/directed # version of networkx: # contains self-loops # edges have dicts # data per graph/node/edge for attr, value in child.items(): if attr == 'edgedefault' and value == 'undirected': defaultDirected[0] = False elif attr == 'id': graphid = value if defaultDirected[0]: G = nx.DiGraph() else: G = nx.Graph() # add id, nodekeys and edkeys as traits self.networkid = graphid self.nodekeys = nodekeys self.edgekeys = edgekeys # iterate over all nodes and edges for children in child.iterchildren(): if children.tag == (nsprefix+'node'): # parse the node for attr, value in children.items(): if attr == 'id': # add the node with corresponding id G.add_node(value) # keep node id to store attributes nodeid = value elif attr == (nsxlink+'href'): # add xlink to node dictionary G.node[nodeid]['xlink'] = value else: # node attribute not known logger.warning('The following node attribute is not known and thus discarded:'+ attr + ':' + value) # parse node data, add to node dict for data in children.iterchildren(): # read the keylabel, i.e. the data attribute name keylabel = data.attrib['key'] # is the keylabel in the list of allowed keys if nodekeys.has_key(keylabel): if not data.text == '': # add data to the node's dict G.node[nodeid][keylabel] = data.text else: # no data available, check if default value exists if nodekeys[keylabel].has_key('default'): # add default data to the node's dict G.node[nodeid][keylabel] = nodekeys[keylabel]['default'] logger.debug('Added default value '+ keylabel + ':' + nodekeys[keylabel]['default']) else: logger.warning('Nor data nor default value defined for ' + keylabel) # TODO: Work with exceptions! else: logger.warning("Data entry with key " + keylabel + " not defined.") elif children.tag == (nsprefix+'edge'): # parse the edge # parse its attributes for attr, value in children.items(): if attr == 'id': # no usage of edge id # add the edge with corresponding id src = children.attrib['source'] tar = children.attrib['target'] G.add_edge(src, tar) # keep dest and tar id to store attributes srcid = src tarid = tar elif attr == (nsxlink+'href'): # add xlink to edge dictionary G.edge[srcid][tarid]['xlink'] = value # parse data, and add to the edge dict for data in children.iterchildren(): # read the keylabel, i.e. the data attribute name keylabel = data.attrib['key'] # is the keylabel in the list of allowed keys if self.edgekeys.has_key(keylabel): if not data.text == '': # add data to the edge's dict, assume float!! G.edge[srcid][tarid][keylabel] = float(data.text) else: # no data available, check if default value exists G.edge[srcid][tarid][keylabel] = self._return_default_edgevalue(self.edgekeys, keylabel) data_keys = G.edge[srcid][tarid].keys() # check if we missed some edge keys that are available in the header for k, v in self.edgekeys.items(): if not k in data_keys: G.edge[srcid][tarid][k] = self._return_default_edgevalue(self.edgekeys, k) # return the generated network graph return G