예제 #1
0
 def test_scipy_sparse(self):
     """Test cvxopt sparse interface.
     """
     interface = intf.get_matrix_interface(sp.csc_matrix)
     # const_to_matrix
     mat = interface.const_to_matrix([1, 2, 3])
     self.assertEqual(interface.shape(mat), (3, 1))
     # C = cvxopt.spmatrix([1, 1, 1, 1, 1], [0, 1, 2, 0, 0, ], [0, 0, 0, 1, 2])
     # mat = interface.const_to_matrix(C)
     # self.assertEqual(interface.shape(mat), (3, 3))
     # identity
     mat = interface.identity(4)
     cmp_mat = interface.const_to_matrix(np.eye(4))
     self.assertEqual(interface.shape(mat), interface.shape(cmp_mat))
     assert (mat - cmp_mat).nnz == 0
     # scalar_matrix
     mat = interface.scalar_matrix(2, (4, 3))
     self.assertEqual(interface.shape(mat), (4, 3))
     self.assertEqual(interface.index(mat, (1, 2)), 2)
     # reshape
     mat = interface.const_to_matrix([[1, 2, 3], [3, 4, 5]])
     mat = interface.reshape(mat, (6, 1))
     self.assertEqual(interface.index(mat, (4, 0)), 4)
     # Test scalars.
     scalar = interface.scalar_matrix(1, (1, 1))
     self.assertEqual(type(scalar), np.ndarray)
     scalar = interface.scalar_matrix(1, (1, 3))
     self.assertEqual(scalar.shape, (1, 3))
     # index
     mat = interface.const_to_matrix([[1, 2, 3, 4], [3, 4, 5, 6]])
     self.assertEqual(interface.index(mat, (0, 1)), 3)
     mat = interface.index(mat, (slice(1, 4, 2), slice(0, 2, None)))
     assert not (mat - np.array([[2, 4], [4, 6]])).any()
     # scalar value
     mat = sp.eye(1)
     self.assertEqual(intf.scalar_value(mat), 1.0)
     # Sign
     self.sign_for_intf(interface)
     # Complex
     # define sparse matrix [[0, 1j],[-1j,0]]
     row = np.array([0, 1])
     col = np.array([1, 0])
     data = np.array([1j, -1j])
     A = sp.csr_matrix((data, (row, col)), shape=(2, 2))
     mat = interface.const_to_matrix(A)
     self.assertEquals(mat[0, 1], 1j)
     self.assertEquals(mat[1, 0], -1j)
예제 #2
0
    def _process_constr(self, constr, mat_cache, vert_offset):
        """Extract the coefficients from a constraint.

        Parameters
        ----------
        constr : LinConstr
            The linear constraint to process.
        mat_cache : MatrixCache
            The cached version of the matrix-vector pair.
        vert_offset : int
            The row offset of the constraint.
        """
        V, I, J = mat_cache.coo_tup
        coeffs = op2mat.get_coefficients(constr.expr)
        for id_, block in coeffs:
            vert_start = vert_offset
            vert_end = vert_start + constr.size[0]*constr.size[1]
            if id_ is lo.CONSTANT_ID:
                # Flatten the block.
                block = self.vec_intf.const_to_matrix(block)
                block_size = intf.size(block)
                block = self.vec_intf.reshape(
                    block,
                    (block_size[0]*block_size[1], 1)
                )
                mat_cache.const_vec[vert_start:vert_end, :] += block
            else:
                horiz_offset = self.sym_data.var_offsets[id_]
                if intf.is_scalar(block):
                    block = intf.scalar_value(block)
                    V.append(block)
                    I.append(vert_start)
                    J.append(horiz_offset)
                else:
                    # Block is a numpy matrix or
                    # scipy CSC sparse matrix.
                    if not intf.is_sparse(block):
                        block = intf.DEFAULT_SPARSE_INTF.const_to_matrix(
                            block
                        )
                    block = block.tocoo()
                    V.extend(block.data)
                    I.extend(block.row + vert_start)
                    J.extend(block.col + horiz_offset)
예제 #3
0
 def test_scipy_sparse(self):
     interface = intf.get_matrix_interface(sp.csc_matrix)
     # const_to_matrix
     mat = interface.const_to_matrix([1, 2, 3])
     self.assertEquals(interface.size(mat), (3, 1))
     C = cvxopt.spmatrix([1, 1, 1, 1, 1], [
         0,
         1,
         2,
         0,
         0,
     ], [0, 0, 0, 1, 2])
     mat = interface.const_to_matrix(C)
     self.assertEquals(interface.size(mat), (3, 3))
     # identity
     mat = interface.identity(4)
     cmp_mat = interface.const_to_matrix(np.eye(4))
     self.assertEquals(interface.size(mat), interface.size(cmp_mat))
     assert (mat - cmp_mat).nnz == 0
     # scalar_matrix
     mat = interface.scalar_matrix(2, 4, 3)
     self.assertEquals(interface.size(mat), (4, 3))
     self.assertEquals(interface.index(mat, (1, 2)), 2)
     # reshape
     mat = interface.const_to_matrix([[1, 2, 3], [3, 4, 5]])
     mat = interface.reshape(mat, (6, 1))
     self.assertEquals(interface.index(mat, (4, 0)), 4)
     mat = interface.const_to_matrix(1, convert_scalars=True)
     self.assertEquals(type(interface.reshape(mat, (1, 1))), type(mat))
     # Test scalars.
     scalar = interface.scalar_matrix(1, 1, 1)
     self.assertEquals(type(scalar), np.ndarray)
     scalar = interface.scalar_matrix(1, 1, 3)
     self.assertEquals(scalar.shape, (1, 3))
     # index
     mat = interface.const_to_matrix([[1, 2, 3, 4], [3, 4, 5, 6]])
     self.assertEquals(interface.index(mat, (0, 1)), 3)
     mat = interface.index(mat, (slice(1, 4, 2), slice(0, 2, None)))
     assert not (mat - np.matrix("2 4; 4 6")).any()
     # scalar value
     mat = sp.eye(1)
     self.assertEqual(intf.scalar_value(mat), 1.0)
     # Sign
     self.sign_for_intf(interface)
예제 #4
0
파일: atom.py 프로젝트: bakhtiary/cvxpy
 def value(self):
     # Catch the case when the expression is known to be
     # zero through DCP analysis.
     if self.is_zero():
         result = intf.DEFAULT_INTERFACE.zeros(*self.size)
     else:
         arg_values = []
         for arg in self.args:
             # A argument without a value makes all higher level
             # values None.
             if arg.value is None:
                 return None
             else:
                 arg_values.append(arg.value)
         result = self.numeric(arg_values)
     # Reduce to a scalar if possible.
     if intf.size(result) == (1, 1):
         return intf.scalar_value(result)
     else:
         return result
예제 #5
0
    def _process_constr(self, constr, mat_cache, vert_offset):
        """Extract the coefficients from a constraint.

        Parameters
        ----------
        constr : LinConstr
            The linear constraint to process.
        mat_cache : MatrixCache
            The cached version of the matrix-vector pair.
        vert_offset : int
            The row offset of the constraint.
        """
        V, I, J = mat_cache.coo_tup
        coeffs = op2mat.get_coefficients(constr.expr)
        for id_, block in coeffs:
            vert_start = vert_offset
            vert_end = vert_start + constr.size[0] * constr.size[1]
            if id_ is lo.CONSTANT_ID:
                # Flatten the block.
                block = self.vec_intf.const_to_matrix(block)
                block_size = intf.size(block)
                block = self.vec_intf.reshape(
                    block, (block_size[0] * block_size[1], 1))
                mat_cache.const_vec[vert_start:vert_end, :] += block
            else:
                horiz_offset = self.sym_data.var_offsets[id_]
                if intf.is_scalar(block):
                    block = intf.scalar_value(block)
                    V.append(block)
                    I.append(vert_start)
                    J.append(horiz_offset)
                else:
                    # Block is a numpy matrix or
                    # scipy CSC sparse matrix.
                    if not intf.is_sparse(block):
                        block = intf.DEFAULT_SPARSE_INTERFACE.const_to_matrix(
                            block)
                    block = block.tocoo()
                    V.extend(block.data)
                    I.extend(block.row + vert_start)
                    J.extend(block.col + horiz_offset)
예제 #6
0
 def test_scipy_sparse(self):
     interface = intf.get_matrix_interface(sp.csc_matrix)
     # const_to_matrix
     mat = interface.const_to_matrix([1, 2, 3])
     self.assertEqual(interface.size(mat), (3, 1))
     # C = cvxopt.spmatrix([1, 1, 1, 1, 1], [0, 1, 2, 0, 0, ], [0, 0, 0, 1, 2])
     # mat = interface.const_to_matrix(C)
     # self.assertEqual(interface.size(mat), (3, 3))
     # identity
     mat = interface.identity(4)
     cmp_mat = interface.const_to_matrix(np.eye(4))
     self.assertEqual(interface.size(mat), interface.size(cmp_mat))
     assert (mat - cmp_mat).nnz == 0
     # scalar_matrix
     mat = interface.scalar_matrix(2, 4, 3)
     self.assertEqual(interface.size(mat), (4, 3))
     self.assertEqual(interface.index(mat, (1, 2)), 2)
     # reshape
     mat = interface.const_to_matrix([[1, 2, 3], [3, 4, 5]])
     mat = interface.reshape(mat, (6, 1))
     self.assertEqual(interface.index(mat, (4, 0)), 4)
     mat = interface.const_to_matrix(1, convert_scalars=True)
     self.assertEqual(type(interface.reshape(mat, (1, 1))), type(mat))
     # Test scalars.
     scalar = interface.scalar_matrix(1, 1, 1)
     self.assertEqual(type(scalar), np.ndarray)
     scalar = interface.scalar_matrix(1, 1, 3)
     self.assertEqual(scalar.shape, (1, 3))
     # index
     mat = interface.const_to_matrix([[1, 2, 3, 4], [3, 4, 5, 6]])
     self.assertEqual(interface.index(mat, (0, 1)), 3)
     mat = interface.index(mat, (slice(1, 4, 2), slice(0, 2, None)))
     assert not (mat - np.matrix("2 4; 4 6")).any()
     # scalar value
     mat = sp.eye(1)
     self.assertEqual(intf.scalar_value(mat), 1.0)
     # Sign
     self.sign_for_intf(interface)
예제 #7
0
파일: problem.py 프로젝트: bakhtiary/cvxpy
    def _constr_matrix(self, constraints, var_offsets, x_length,
                       matrix_intf, vec_intf):
        """Returns a matrix and vector representing a list of constraints.

        In the matrix, each constraint is given a block of rows.
        Each variable coefficient is inserted as a block with upper
        left corner at matrix[variable offset, constraint offset].
        The constant term in the constraint is added to the vector.

        Parameters
        ----------
        constraints : list
            A list of constraints.
        var_offsets : dict
            A dict of variable id to horizontal offset.
        x_length : int
            The length of the x vector.
        matrix_intf : interface
            The matrix interface to use for creating the constraints matrix.
        vec_intf : interface
            The matrix interface to use for creating the constant vector.

        Returns
        -------
        tuple
            A (matrix, vector) tuple.
        """

        rows = sum([c.size[0] * c.size[1] for c in constraints])
        cols = x_length
        V, I, J = [], [], []
        const_vec = vec_intf.zeros(rows, 1)
        vert_offset = 0
        for constr in constraints:
            coeffs = op2mat.get_coefficients(constr.expr)
            for id_, block in coeffs:
                vert_start = vert_offset
                vert_end = vert_start + constr.size[0]*constr.size[1]
                if id_ is lo.CONSTANT_ID:
                    # Flatten the block.
                    block = self._DENSE_INTF.const_to_matrix(block)
                    block_size = intf.size(block)
                    block = self._DENSE_INTF.reshape(
                        block,
                        (block_size[0]*block_size[1], 1)
                    )
                    const_vec[vert_start:vert_end, :] += block
                else:
                    horiz_offset = var_offsets[id_]
                    if intf.is_scalar(block):
                        block = intf.scalar_value(block)
                        V.append(block)
                        I.append(vert_start)
                        J.append(horiz_offset)
                    else:
                        # Block is a numpy matrix or
                        # scipy CSC sparse matrix.
                        if not intf.is_sparse(block):
                            block = self._SPARSE_INTF.const_to_matrix(block)
                        block = block.tocoo()
                        V.extend(block.data)
                        I.extend(block.row + vert_start)
                        J.extend(block.col + horiz_offset)
            vert_offset += constr.size[0]*constr.size[1]

        # Create the constraints matrix.
        if len(V) > 0:
            matrix = sp.coo_matrix((V, (I, J)), (rows, cols))
            # Convert the constraints matrix to the correct type.
            matrix = matrix_intf.const_to_matrix(matrix, convert_scalars=True)
        else: # Empty matrix.
            matrix = matrix_intf.zeros(rows, cols)
        return (matrix, -const_vec)
예제 #8
0
def extract_dual_value(result_vec, offset, constraint):
    value = result_vec[offset:offset + constraint.size]
    if constraint.size == 1:
        value = intf.scalar_value(value)
    offset += constraint.size
    return value, offset
예제 #9
0
    def _constr_matrix(self, constraints, var_offsets, x_length, matrix_intf,
                       vec_intf):
        """Returns a matrix and vector representing a list of constraints.

        In the matrix, each constraint is given a block of rows.
        Each variable coefficient is inserted as a block with upper
        left corner at matrix[variable offset, constraint offset].
        The constant term in the constraint is added to the vector.

        Parameters
        ----------
        constraints : list
            A list of constraints.
        var_offsets : dict
            A dict of variable id to horizontal offset.
        x_length : int
            The length of the x vector.
        matrix_intf : interface
            The matrix interface to use for creating the constraints matrix.
        vec_intf : interface
            The matrix interface to use for creating the constant vector.

        Returns
        -------
        tuple
            A (matrix, vector) tuple.
        """

        rows = sum([c.size[0] * c.size[1] for c in constraints])
        cols = x_length
        V, I, J = [], [], []
        const_vec = vec_intf.zeros(rows, 1)
        vert_offset = 0
        for constr in constraints:
            coeffs = op2mat.get_coefficients(constr.expr)
            for id_, size, block in coeffs:
                vert_start = vert_offset
                vert_end = vert_start + constr.size[0] * constr.size[1]
                if id_ is lo.CONSTANT_ID:
                    # Flatten the block.
                    block = self._DENSE_INTF.const_to_matrix(block)
                    block_size = intf.size(block)
                    block = self._DENSE_INTF.reshape(
                        block, (block_size[0] * block_size[1], 1))
                    const_vec[vert_start:vert_end, :] += block
                else:
                    horiz_offset = var_offsets[id_]
                    if intf.is_scalar(block):
                        block = intf.scalar_value(block)
                        V.append(block)
                        I.append(vert_start)
                        J.append(horiz_offset)
                    else:
                        # Block is a numpy matrix or
                        # scipy CSC sparse matrix.
                        if not intf.is_sparse(block):
                            block = self._SPARSE_INTF.const_to_matrix(block)
                        block = block.tocoo()
                        V.extend(block.data)
                        I.extend(block.row + vert_start)
                        J.extend(block.col + horiz_offset)
            vert_offset += constr.size[0] * constr.size[1]

        # Create the constraints matrix.
        if len(V) > 0:
            matrix = sp.coo_matrix((V, (I, J)), (rows, cols))
            # Convert the constraints matrix to the correct type.
            matrix = matrix_intf.const_to_matrix(matrix, convert_scalars=True)
        else:  # Empty matrix.
            matrix = matrix_intf.zeros(rows, cols)
        return (matrix, -const_vec)