def test_pit_model(self): cfg = CN() cfg.MODEL = CN() add_pit_backbone_config(cfg) build_model = BACKBONE_REGISTRY.get("pit_d2go_model_wrapper") pit_models = { "pit_ti_ours": 160, "pit_ti": 224, "pit_s_ours_v1": 256, "pit_s": 224, } pit_model_weights = { "pit_ti_ours": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]128_[mcfg]pit_ti_ours_.HImkjNCpJI/checkpoint_best.pth", "pit_ti": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]128_[mcfg]pit_ti_.QJeFNUfYOD/checkpoint_best.pth", "pit_s_ours_v1": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]64_[mcfg]pit_s_ours_v1_.LXdwyBDaNY/checkpoint_best.pth", "pit_s": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]128_[mcfg]pit_s_.zReQLPOuJe/checkpoint_best.pth", } for model_name, org_size in pit_models.items(): print("model_name", model_name) cfg.MODEL.PIT.MODEL_CONFIG = f"manifold://mobile_vision_workflows/tree/workflows/wbc/deit/model_cfgs/{model_name}.json" cfg.MODEL.PIT.WEIGHTS = pit_model_weights[model_name] cfg.MODEL.PIT.DILATED = True model = build_model(cfg, None) model.eval() for input_size_h in [org_size, 192, 224, 256, 320]: for input_size_w in [org_size, 192, 224, 256, 320]: x = torch.rand(1, 3, input_size_h, input_size_w) y = model(x) print(f"x.shape: {x.shape}, y.shape: {y.shape}")
def test_modeling_hook_cfg(self): """Create model with modeling hook using build_model""" cfg = CfgNode() cfg.MODEL = CfgNode() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" cfg.MODEL.MODELING_HOOKS = ["PlusOneHook", "TimesTwoHook"] model = build_model(cfg) self.assertEqual(model(2), 10) self.assertTrue(hasattr(model, "_modeling_hooks")) self.assertTrue(hasattr(model, "unapply_modeling_hooks")) orig_model = model.unapply_modeling_hooks() self.assertIsInstance(orig_model, TestArch) self.assertEqual(orig_model(2), 4)
def _get_default_config(): cfg = CfgNode() cfg.INPUT = CfgNode() cfg.INPUT.CROP = CfgNode() cfg.INPUT.CROP.ENABLED = False cfg.INPUT.CROP.SIZE = (0.9, 0.9) cfg.INPUT.CROP.TYPE = "relative_range" cfg.MODEL = CfgNode() cfg.MODEL.MIN_DIM_SIZE = 360 cfg.INFERENCE_SDK = CfgNode() cfg.INFERENCE_SDK.MODEL = CfgNode() cfg.INFERENCE_SDK.MODEL.SCORE_THRESHOLD = 0.8 cfg.INFERENCE_SDK.IOU_TRACKER = CfgNode() cfg.INFERENCE_SDK.IOU_TRACKER.IOU_THRESHOLD = 0.15 cfg.INFERENCE_SDK.ENABLE_ID_TRACKING = True return cfg
def create_cfg_from_cli_args(args, default_cfg): """ Instead of loading from defaults.py, this binary only includes necessary configs building from scratch, and overrides them from args. There're two levels of config: _C: the config system used by this binary, which is a sub-set of training config, override by configurable_cfg. It can also be override by args.opts for convinience. configurable_cfg: common configs that user should explicitly specify in the args. """ _C = CN() _C.INPUT = default_cfg.INPUT _C.DATASETS = default_cfg.DATASETS _C.DATALOADER = default_cfg.DATALOADER _C.TEST = default_cfg.TEST if hasattr(default_cfg, "D2GO_DATA"): _C.D2GO_DATA = default_cfg.D2GO_DATA if hasattr(default_cfg, "TENSORBOARD"): _C.TENSORBOARD = default_cfg.TENSORBOARD # NOTE configs below might not be necessary, but must add to make code work _C.MODEL = CN() _C.MODEL.META_ARCHITECTURE = default_cfg.MODEL.META_ARCHITECTURE _C.MODEL.MASK_ON = default_cfg.MODEL.MASK_ON _C.MODEL.KEYPOINT_ON = default_cfg.MODEL.KEYPOINT_ON _C.MODEL.LOAD_PROPOSALS = default_cfg.MODEL.LOAD_PROPOSALS assert _C.MODEL.LOAD_PROPOSALS is False, "caffe2 model doesn't support" _C.OUTPUT_DIR = args.output_dir configurable_cfg = [ "DATASETS.TEST", args.datasets, "INPUT.MIN_SIZE_TEST", args.min_size, "INPUT.MAX_SIZE_TEST", args.max_size, ] cfg = _C.clone() cfg.merge_from_list(configurable_cfg) cfg.merge_from_list(args.opts) return cfg
def test_modeling_hook_copy(self): """Create model with modeling hook, the model could be copied""" cfg = CfgNode() cfg.MODEL = CfgNode() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" cfg.MODEL.MODELING_HOOKS = ["PlusOneHook", "TimesTwoHook"] model = build_model(cfg) self.assertEqual(model(2), 10) model_copy = copy.deepcopy(model) orig_model = model.unapply_modeling_hooks() self.assertIsInstance(orig_model, TestArch) self.assertEqual(orig_model(2), 4) orig_model_copy = model_copy.unapply_modeling_hooks() self.assertEqual(orig_model_copy(2), 4)
def test_deit_model(self): cfg = CN() cfg.MODEL = CN() add_deit_backbone_config(cfg) build_model = BACKBONE_REGISTRY.get("deit_d2go_model_wrapper") deit_models = { "8X-7-RM_4": 170, "DeiT-Tiny": 224, "DeiT-Small": 224, "32X-1-RM_2": 221, "8X-7": 160, "32X-1": 256, } deit_model_weights = { "8X-7-RM_4": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210511/deit_[model]deit_scaling_distill_[bs]128_[mcfg]8X-7-RM_4_.OIXarYpbZw/checkpoint_best.pth", "DeiT-Tiny": "manifold://mobile_vision_workflows/tree/workflows/cl114/DeiT-official-ckpt/deit_tiny_distilled_patch16_224-b40b3cf7.pth", "DeiT-Small": "manifold://mobile_vision_workflows/tree/workflows/cl114/DeiT-official-ckpt/deit_small_distilled_patch16_224-649709d9.pth", "32X-1-RM_2": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210511/deit_[model]deit_scaling_distill_[bs]64_[mcfg]32X-1-RM_2_.xusuFyNMdD/checkpoint_best.pth", "8X-7": "manifold://mobile_vision_workflows/tree/workflows/cl114/scaled_best/8X-7.pth", "32X-1": "manifold://mobile_vision_workflows/tree/workflows/cl114/scaled_best/32X-1.pth", } for model_name, org_size in deit_models.items(): print("model_name", model_name) cfg.MODEL.DEIT.MODEL_CONFIG = f"manifold://mobile_vision_workflows/tree/workflows/wbc/deit/model_cfgs/{model_name}.json" cfg.MODEL.DEIT.WEIGHTS = deit_model_weights[model_name] model = build_model(cfg, None) model.eval() for input_size_h in [org_size, 192, 224, 256, 320]: for input_size_w in [org_size, 192, 224, 256, 320]: x = torch.rand(1, 3, input_size_h, input_size_w) y = model(x) print(f"x.shape: {x.shape}, y.shape: {y.shape}")