maxDepth=3000, minlength=3, rmvNaN=True) df_f = dfI_f, dfII_f, dfIII_f # df_f = dfI, dfII, dfIII #%% # Plot ridges fitted over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) pEXP.plot_ridges_harmonic(dfI_f, dfII_f, dfIII_f, ax=ax, label=True) df_fit = dEXP.fit_ridges(df_f, rmvOutliers=True) # fit ridges on filtered data # pEXP.plot_ridges_sources(df_fit, ax=ax, z_max_source=-max_elevation*1.2, # ridge_type=[0,1,2],ridge_nb=None) pEXP.plot_ridges_sources(df_fit, ax=ax, z_max_source=-6000, ridge_type=[0, 1, 2], ridge_nb=None) square([x1, x2, -z1, -z2]) plt.annotate(dens, [(x1 + x2) / 2, -(z1 + z2) / 2]) #%% # ridges analysis z0 = -2000
#%% ------------------------------- plot ridges over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) pEXP.plot_ridges_harmonic(dfI,dfII,dfIII,ax=ax) #%% ------------------------------- filter ridges regionally constrainsted) dfI_f,dfII_f, dfIII_f = dEXP.filter_ridges(dfI,dfII,dfIII, 1,maxAlt_ridge, minlength=8,rmvNaN=True) df_f = dfI_f, dfII_f, dfIII_f #%% ------------------------------- plot ridges fitted over continuated section fig = plt.figure() ax = plt.gca() pEXP.plot_xy(mesh, label=label_prop, ax=ax) #, ldg=) pEXP.plot_ridges_harmonic(dfI_f,dfII_f,dfIII_f,ax=ax,label=True) df_fit = dEXP.fit_ridges(df_f) # fit ridges on filtered data pEXP.plot_ridges_sources(df_fit, ax=ax, z_max_source=-max_elevation*2, ridge_type=[0,1,2],ridge_nb=None)