예제 #1
0
    def can_be_applied(self, graph: SDFGState, expr_index, sdfg: SDFG,
                       permissive) -> bool:
        me = self.mapentry

        if len(xfh.get_internal_scopes(graph, me, immediate=True)) == 0:
            return False

        # GPU map that has no predefined thread-block maps
        return (me.schedule == dtypes.ScheduleType.GPU_Device
                and not xfh.gpu_map_has_explicit_threadblocks(graph, me))
예제 #2
0
    def apply(self, graph: SDFGState, sdfg: SDFG) -> nodes.MapEntry:
        me = self.mapentry

        # Add new map within map
        mx = graph.exit_node(me)
        new_me, new_mx = graph.add_map('warp_tile',
                                       dict(__tid=f'0:{self.warp_size}'),
                                       dtypes.ScheduleType.GPU_ThreadBlock)
        __tid = symbolic.pystr_to_symbolic('__tid')
        for e in graph.out_edges(me):
            xfh.reconnect_edge_through_map(graph, e, new_me, True)
        for e in graph.in_edges(mx):
            xfh.reconnect_edge_through_map(graph, e, new_mx, False)

        # Stride and offset all internal maps
        maps_to_stride = xfh.get_internal_scopes(graph, new_me, immediate=True)
        for nstate, nmap in maps_to_stride:
            nsdfg = nstate.parent
            nsdfg_node = nsdfg.parent_nsdfg_node

            # Map cannot be partitioned across a warp
            if (nmap.range.size()[-1] < self.warp_size) == True:
                continue

            if nsdfg is not sdfg and nsdfg_node is not None:
                nsdfg_node.symbol_mapping['__tid'] = __tid
                if '__tid' not in nsdfg.symbols:
                    nsdfg.add_symbol('__tid', dtypes.int32)
            nmap.range[-1] = (nmap.range[-1][0], nmap.range[-1][1] - __tid,
                              nmap.range[-1][2] * self.warp_size)
            subgraph = nstate.scope_subgraph(nmap)
            subgraph.replace(nmap.params[-1], f'{nmap.params[-1]} + __tid')
            inner_map_exit = nstate.exit_node(nmap)
            # If requested, replicate maps with multiple dependent maps
            if self.replicate_maps:
                destinations = [
                    nstate.memlet_path(edge)[-1].dst
                    for edge in nstate.out_edges(inner_map_exit)
                ]

                for dst in destinations:
                    # Transformation will not replicate map with more than one
                    # output
                    if len(destinations) != 1:
                        break
                    if not isinstance(dst, nodes.AccessNode):
                        continue  # Not leading to access node
                    if not xfh.contained_in(nstate, dst, new_me):
                        continue  # Memlet path goes out of map
                    if not nsdfg.arrays[dst.data].transient:
                        continue  # Cannot modify non-transients
                    for edge in nstate.out_edges(dst)[1:]:
                        rep_subgraph = xfh.replicate_scope(
                            nsdfg, nstate, subgraph)
                        rep_edge = nstate.out_edges(
                            rep_subgraph.sink_nodes()[0])[0]
                        # Add copy of data
                        newdesc = copy.deepcopy(sdfg.arrays[dst.data])
                        newname = nsdfg.add_datadesc(dst.data,
                                                     newdesc,
                                                     find_new_name=True)
                        newaccess = nstate.add_access(newname)
                        # Redirect edges
                        xfh.redirect_edge(nstate,
                                          rep_edge,
                                          new_dst=newaccess,
                                          new_data=newname)
                        xfh.redirect_edge(nstate,
                                          edge,
                                          new_src=newaccess,
                                          new_data=newname)

            # If has WCR, add warp-collaborative reduction on outputs
            for out_edge in nstate.out_edges(inner_map_exit):
                dst = nstate.memlet_path(out_edge)[-1].dst
                if not xfh.contained_in(nstate, dst, new_me):
                    # Skip edges going out of map
                    continue
                if dst.desc(nsdfg).storage == dtypes.StorageType.GPU_Global:
                    # Skip shared memory
                    continue
                if out_edge.data.wcr is not None:
                    ctype = nsdfg.arrays[out_edge.data.data].dtype.ctype
                    redtype = detect_reduction_type(out_edge.data.wcr)
                    if redtype == dtypes.ReductionType.Custom:
                        raise NotImplementedError
                    credtype = ('dace::ReductionType::' +
                                str(redtype)[str(redtype).find('.') + 1:])

                    # One element: tasklet
                    if out_edge.data.subset.num_elements() == 1:
                        # Add local access between thread-local and warp reduction
                        name = nsdfg._find_new_name(out_edge.data.data)
                        nsdfg.add_scalar(
                            name,
                            nsdfg.arrays[out_edge.data.data].dtype,
                            transient=True)

                        # Initialize thread-local to global value
                        read = nstate.add_read(out_edge.data.data)
                        write = nstate.add_write(name)
                        edge = nstate.add_nedge(read, write,
                                                copy.deepcopy(out_edge.data))
                        edge.data.wcr = None
                        xfh.state_fission(nsdfg,
                                          SubgraphView(nstate, [read, write]))

                        newnode = nstate.add_access(name)
                        nstate.remove_edge(out_edge)
                        edge = nstate.add_edge(out_edge.src, out_edge.src_conn,
                                               newnode, None,
                                               copy.deepcopy(out_edge.data))
                        for e in nstate.memlet_path(edge):
                            e.data.data = name
                            e.data.subset = subsets.Range([(0, 0, 1)])

                        wrt = nstate.add_tasklet(
                            'warpreduce', {'__a'}, {'__out'},
                            f'__out = dace::warpReduce<{credtype}, {ctype}>::reduce(__a);',
                            dtypes.Language.CPP)
                        nstate.add_edge(newnode, None, wrt, '__a',
                                        Memlet(name))
                        out_edge.data.wcr = None
                        nstate.add_edge(wrt, '__out', out_edge.dst, None,
                                        out_edge.data)
                    else:  # More than one element: mapped tasklet
                        # Could be a parallel summation
                        # TODO(later): Check if reduction
                        continue
            # End of WCR to warp reduction

        # Make nested SDFG out of new scope
        xfh.nest_state_subgraph(sdfg, graph,
                                graph.scope_subgraph(new_me, False, False))

        return new_me