예제 #1
0
    def execute(pipeline_context, execution_plan):
        check.inst_param(pipeline_context, 'pipeline_context', SystemPipelineExecutionContext)
        check.inst_param(execution_plan, 'execution_plan', ExecutionPlan)

        step_levels = execution_plan.execution_step_levels()

        intermediates_manager = pipeline_context.intermediates_manager

        limit = pipeline_context.executor_config.max_concurrent

        step_key_set = set(step.key for step in execution_plan.execution_steps())

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Executing steps using multiprocess engine: parent process (pid: {pid})'.format(
                pid=os.getpid()
            ),
            event_specific_data=EngineEventData.multiprocess(
                os.getpid(), step_keys_to_execute=step_key_set
            ),
        )

        # It would be good to implement a reference tracking algorithm here so we could
        # garbage collection results that are no longer needed by any steps
        # https://github.com/dagster-io/dagster/issues/811
        with time_execution_scope() as timer_result:
            for event in copy_required_intermediates_for_execution(
                pipeline_context, execution_plan
            ):
                yield event

            for step_level in step_levels:
                step_contexts_to_execute = []
                for step in step_level:
                    step_context = pipeline_context.for_step(step)

                    if not intermediates_manager.all_inputs_covered(step_context, step):
                        uncovered_inputs = intermediates_manager.uncovered_inputs(
                            step_context, step
                        )
                        step_context.log.error(
                            (
                                'Not all inputs covered for {step}. Not executing.'
                                'Output missing for inputs: {uncovered_inputs}'
                            ).format(uncovered_inputs=uncovered_inputs, step=step.key)
                        )
                        continue

                    step_contexts_to_execute.append(step_context)

                for step_event in bounded_parallel_executor(step_contexts_to_execute, limit):
                    yield step_event

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Multiprocess engine: parent process exiting after {duration} (pid: {pid})'.format(
                duration=format_duration(timer_result.millis), pid=os.getpid()
            ),
            event_specific_data=EngineEventData.multiprocess(os.getpid()),
        )
예제 #2
0
def _execute_steps_core_loop(step_context, inputs, intermediates_manager):
    check.inst_param(step_context, 'step_context', SystemStepExecutionContext)
    check.dict_param(inputs, 'inputs', key_type=str)
    check.inst_param(intermediates_manager, 'intermediates_manager',
                     IntermediatesManager)

    evaluated_inputs = {}
    # do runtime type checks of inputs versus step inputs
    for input_name, input_value in inputs.items():
        evaluated_inputs[input_name] = _get_evaluated_input(
            step_context.step, input_name, input_value)
    yield DagsterEvent.step_start_event(step_context)

    with time_execution_scope() as timer_result:
        step_output_iterator = check.generator(
            _iterate_step_outputs_within_boundary(step_context,
                                                  evaluated_inputs))
    for step_output in check.generator(
            _error_check_step_outputs(step_context, step_output_iterator)):

        if isinstance(step_output, StepOutputValue):
            yield _create_step_output_event(step_context, step_output,
                                            intermediates_manager)
        elif isinstance(step_output, Materialization):
            yield DagsterEvent.step_materialization(step_context, step_output)
        elif isinstance(step_output, ExpectationResult):
            yield DagsterEvent.step_expectation_result(step_context,
                                                       step_output)
        else:
            check.failed(
                'Unexpected step_output {step_output}, should have been caught earlier'
                .format(step_output=step_output))

    yield DagsterEvent.step_success_event(
        step_context, StepSuccessData(duration_ms=timer_result.millis))
예제 #3
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context",
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)

        step_keys_to_execute = execution_plan.step_keys_to_execute

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Executing steps in process (pid: {pid})".format(pid=os.getpid()),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), step_keys_to_execute),
        )

        with time_execution_scope() as timer_result:
            yield from inner_plan_execution_iterator(pipeline_context,
                                                     execution_plan)

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Finished steps in process (pid: {pid}) in {duration_ms}".format(
                pid=os.getpid(),
                duration_ms=format_duration(timer_result.millis)),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), step_keys_to_execute),
        )
예제 #4
0
def _execution_step_error_boundary(context, step, msg, **kwargs):
    '''
    Wraps the execution of user-space code in an error boundary. This places a uniform
    policy around an user code invoked by the framework. This ensures that all user
    errors are wrapped in the SolidUserCodeExecutionError, and that the original stack
    trace of the user error is preserved, so that it can be reported without confusing
    framework code in the stack trace, if a tool author wishes to do so. This has
    been especially help in a notebooking context.
    '''
    check.inst_param(context, 'context', RuntimeExecutionContext)
    check.str_param(msg, 'msg')

    context.events.execution_plan_step_start(step.key)
    try:
        with time_execution_scope() as timer_result:
            yield

        context.events.execution_plan_step_success(step.key,
                                                   timer_result.millis)
    except Exception as e:  # pylint: disable=W0703
        context.events.execution_plan_step_failure(step.key, sys.exc_info())

        stack_trace = get_formatted_stack_trace(e)
        context.error(str(e), stack_trace=stack_trace)

        if isinstance(e, DagsterError):
            raise e
        else:
            raise_from(
                DagsterUserCodeExecutionError(
                    msg.format(**kwargs),
                    user_exception=e,
                    original_exc_info=sys.exc_info()),
                e,
            )
예제 #5
0
def test_basic_usage():
    with time_execution_scope() as timer_result:
        pass

    assert timer_result
    assert isinstance(timer_result.millis, float)
    assert isinstance(timer_result.seconds, float)
예제 #6
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, 'pipeline_context', SystemPipelineExecutionContext)
        check.inst_param(execution_plan, 'execution_plan', ExecutionPlan)

        step_keys_to_execute = execution_plan.step_keys_to_execute

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Executing steps in process (pid: {pid})'.format(pid=os.getpid()),
            event_specific_data=EngineEventData.in_process(os.getpid(), step_keys_to_execute),
        )

        with time_execution_scope() as timer_result:
            for event in inner_plan_execution_iterator(
                pipeline_context, execution_plan, self.retries
            ):
                yield event

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Finished steps in process (pid: {pid}) in {duration_ms}'.format(
                pid=os.getpid(), duration_ms=format_duration(timer_result.millis)
            ),
            event_specific_data=EngineEventData.in_process(os.getpid(), step_keys_to_execute),
        )
예제 #7
0
def single_resource_event_generator(context, resource_name, resource_def):
    try:
        msg_fn = lambda: "Error executing resource_fn on ResourceDefinition {name}".format(
            name=resource_name)
        with user_code_error_boundary(DagsterResourceFunctionError, msg_fn):
            try:
                with time_execution_scope() as timer_result:
                    resource_or_gen = resource_def.resource_fn(context)
                    gen = ensure_gen(resource_or_gen)
                    resource = next(gen)
                resource = InitializedResource(
                    resource, format_duration(timer_result.millis))
            except StopIteration:
                check.failed(
                    "Resource generator {name} must yield one item.".format(
                        name=resource_name))

        yield resource

    except DagsterUserCodeExecutionError as dagster_user_error:
        raise dagster_user_error

    with user_code_error_boundary(DagsterResourceFunctionError, msg_fn):
        try:
            next(gen)
        except StopIteration:
            pass
        else:
            check.failed(
                "Resource generator {name} yielded more than one item.".format(
                    name=resource_name))
예제 #8
0
def _core_dagster_event_sequence_for_step(step_context):
    '''
    Execute the step within the step_context argument given the in-memory
    events. This function yields a sequence of DagsterEvents, but without
    catching any exceptions that have bubbled up during the computation
    of the step.
    '''
    check.inst_param(step_context, 'step_context', SystemStepExecutionContext)

    yield DagsterEvent.step_start_event(step_context)

    inputs = {}
    for input_name, input_value in _input_values_from_intermediates_manager(
            step_context).items():
        if isinstance(input_value, ObjectStoreOperation):
            yield DagsterEvent.object_store_operation(
                step_context,
                ObjectStoreOperation.serializable(input_value,
                                                  value_name=input_name))
            inputs[input_name] = input_value.obj
        else:
            inputs[input_name] = input_value

    for input_name, input_value in inputs.items():
        for evt in check.generator(
                _type_checked_event_sequence_for_input(step_context,
                                                       input_name,
                                                       input_value)):
            yield evt

    with time_execution_scope() as timer_result:
        user_event_sequence = check.generator(
            _user_event_sequence_for_step_compute_fn(step_context, inputs))

        # It is important for this loop to be indented within the
        # timer block above in order for time to be recorded accurately.
        for user_event in check.generator(
                _step_output_error_checked_user_event_sequence(
                    step_context, user_event_sequence)):

            if isinstance(user_event, Output):
                for evt in _create_step_events_for_output(
                        step_context, user_event):
                    yield evt
            elif isinstance(user_event, Materialization):
                yield DagsterEvent.step_materialization(
                    step_context, user_event)
            elif isinstance(user_event, ExpectationResult):
                yield DagsterEvent.step_expectation_result(
                    step_context, user_event)
            else:
                check.failed(
                    'Unexpected event {event}, should have been caught earlier'
                    .format(event=user_event))

    yield DagsterEvent.step_success_event(
        step_context, StepSuccessData(duration_ms=timer_result.millis))
예제 #9
0
def _execute_core_transform(context, compute_node, conf, inputs):
    '''
    Execute the user-specified transform for the solid. Wrap in an error boundary and do
    all relevant logging and metrics tracking
    '''
    check.inst_param(context, 'context', ExecutionContext)
    check.inst_param(compute_node, 'compute_node', ComputeNode)
    check.dict_param(inputs, 'inputs', key_type=str)

    error_str = 'Error occured during core transform'

    solid = compute_node.solid

    with context.values({
            'solid': solid.name,
            'solid_definition': solid.definition.name
    }):
        context.debug('Executing core transform for solid {solid}.'.format(
            solid=solid.name))

        with time_execution_scope() as timer_result, \
            _user_code_error_boundary(context, error_str):

            all_results = list(
                _collect_result_list(context, compute_node, conf, inputs))

        if len(all_results) != len(solid.definition.output_defs):
            emitted_result_names = set([r.output_name for r in all_results])
            solid_output_names = set([
                output_def.name for output_def in solid.definition.output_defs
            ])
            omitted_outputs = solid_output_names.difference(
                emitted_result_names)
            context.info('Solid {solid} did not fire outputs {outputs}'.format(
                solid=solid.name,
                outputs=repr(omitted_outputs),
            ))

        context.debug(
            'Finished executing transform for solid {solid}. Time elapsed: {millis:.3f} ms'
            .format(
                solid=compute_node.solid.name,
                millis=timer_result.millis,
            ),
            execution_time_ms=timer_result.millis,
        )

        for result in all_results:
            yield result
예제 #10
0
def single_resource_event_generator(context, resource_name, resource_def):
    try:
        msg_fn = lambda: "Error executing resource_fn on ResourceDefinition {name}".format(
            name=resource_name)
        with user_code_error_boundary(DagsterResourceFunctionError,
                                      msg_fn,
                                      log_manager=context.log):
            try:
                with time_execution_scope() as timer_result:
                    resource_or_gen = (resource_def.resource_fn(context)
                                       if is_context_provided(
                                           get_function_params(
                                               resource_def.resource_fn)) else
                                       resource_def.resource_fn())

                    # Flag for whether resource is generator. This is used to ensure that teardown
                    # occurs when resources are initialized out of execution.
                    is_gen = inspect.isgenerator(
                        resource_or_gen) or isinstance(resource_or_gen,
                                                       ContextDecorator)

                    resource_iter = _wrapped_resource_iterator(resource_or_gen)
                    resource = next(resource_iter)
                resource = InitializedResource(
                    resource, format_duration(timer_result.millis), is_gen)
            except StopIteration:
                check.failed(
                    "Resource generator {name} must yield one item.".format(
                        name=resource_name))

        yield resource

    except DagsterUserCodeExecutionError as dagster_user_error:
        raise dagster_user_error

    with user_code_error_boundary(DagsterResourceFunctionError,
                                  msg_fn,
                                  log_manager=context.log):
        try:
            next(resource_iter)
        except StopIteration:
            pass
        else:
            check.failed(
                "Resource generator {name} yielded more than one item.".format(
                    name=resource_name))
예제 #11
0
def _core_dagster_event_sequence_for_step(step_context, inputs, intermediates_manager):
    '''
    Execute the step within the step_context argument given the in-memory
    events. This function yields a sequence of DagsterEvents, but without
    catching any exceptions that have bubbled up during the computation
    of the step.
    '''
    check.inst_param(step_context, 'step_context', SystemStepExecutionContext)
    check.dict_param(inputs, 'inputs', key_type=str)
    check.inst_param(intermediates_manager, 'intermediates_manager', IntermediatesManager)

    evaluated_inputs = {}
    # do runtime type checks of inputs versus step inputs
    for input_name, input_value in inputs.items():
        evaluated_inputs[input_name] = _get_evaluated_input(
            step_context.step, input_name, input_value
        )
    yield DagsterEvent.step_start_event(step_context)

    with time_execution_scope() as timer_result:
        event_sequence = check.generator(
            _event_sequence_for_step_compute_fn(step_context, evaluated_inputs)
        )

        # It is important for this loop to be indented within the
        # timer block above in order for time to be recorded accurately.
        for event in check.generator(
            _step_output_error_checked_event_sequence(step_context, event_sequence)
        ):

            if isinstance(event, Result):
                yield _create_step_output_event(step_context, event, intermediates_manager)
            elif isinstance(event, Materialization):
                yield DagsterEvent.step_materialization(step_context, event)
            elif isinstance(event, ExpectationResult):
                yield DagsterEvent.step_expectation_result(step_context, event)
            else:
                check.failed(
                    'Unexpected event {event}, should have been caught earlier'.format(event=event)
                )

    yield DagsterEvent.step_success_event(
        step_context, StepSuccessData(duration_ms=timer_result.millis)
    )
예제 #12
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context",
                         PlanOrchestrationContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)

        step_keys_to_execute = execution_plan.step_keys_to_execute

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Executing steps in process (pid: {pid})".format(pid=os.getpid()),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), step_keys_to_execute),
        )

        with time_execution_scope() as timer_result:
            yield from iter(
                ExecuteRunWithPlanIterable(
                    execution_plan=pipeline_context.execution_plan,
                    iterator=inner_plan_execution_iterator,
                    execution_context_manager=PlanExecutionContextManager(
                        pipeline=pipeline_context.pipeline,
                        retry_mode=pipeline_context.retry_mode,
                        execution_plan=pipeline_context.execution_plan,
                        run_config=pipeline_context.run_config,
                        pipeline_run=pipeline_context.pipeline_run,
                        instance=pipeline_context.instance,
                        raise_on_error=pipeline_context.raise_on_error,
                        output_capture=pipeline_context.output_capture,
                    ),
                ))

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Finished steps in process (pid: {pid}) in {duration_ms}".format(
                pid=os.getpid(),
                duration_ms=format_duration(timer_result.millis)),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), step_keys_to_execute),
        )
예제 #13
0
def core_dagster_event_sequence_for_step(step_context, prior_attempt_count):
    """
    Execute the step within the step_context argument given the in-memory
    events. This function yields a sequence of DagsterEvents, but without
    catching any exceptions that have bubbled up during the computation
    of the step.
    """
    check.inst_param(step_context, "step_context", SystemStepExecutionContext)
    check.int_param(prior_attempt_count, "prior_attempt_count")
    if prior_attempt_count > 0:
        yield DagsterEvent.step_restarted_event(step_context,
                                                prior_attempt_count)
    else:
        yield DagsterEvent.step_start_event(step_context)

    inputs = {}
    for input_name, input_value in _input_values_from_intermediate_storage(
            step_context):
        if isinstance(input_value, ObjectStoreOperation):
            yield DagsterEvent.object_store_operation(
                step_context,
                ObjectStoreOperation.serializable(input_value,
                                                  value_name=input_name))
            inputs[input_name] = input_value.obj
        elif isinstance(input_value, MultipleStepOutputsListWrapper):
            for op in input_value:
                yield DagsterEvent.object_store_operation(
                    step_context,
                    ObjectStoreOperation.serializable(op,
                                                      value_name=input_name))
            inputs[input_name] = [op.obj for op in input_value]
        else:
            inputs[input_name] = input_value

    for input_name, input_value in inputs.items():
        for evt in check.generator(
                _type_checked_event_sequence_for_input(step_context,
                                                       input_name,
                                                       input_value)):
            yield evt

    with time_execution_scope() as timer_result:
        user_event_sequence = check.generator(
            _user_event_sequence_for_step_compute_fn(step_context, inputs))

        # It is important for this loop to be indented within the
        # timer block above in order for time to be recorded accurately.
        for user_event in check.generator(
                _step_output_error_checked_user_event_sequence(
                    step_context, user_event_sequence)):

            if isinstance(user_event, Output):
                for evt in _create_step_events_for_output(
                        step_context, user_event):
                    yield evt
            elif isinstance(user_event,
                            (AssetMaterialization, Materialization)):
                yield DagsterEvent.step_materialization(
                    step_context, user_event)
            elif isinstance(user_event, ExpectationResult):
                yield DagsterEvent.step_expectation_result(
                    step_context, user_event)
            else:
                check.failed(
                    "Unexpected event {event}, should have been caught earlier"
                    .format(event=user_event))

    # We only want to log exactly one step success event or failure event if possible,
    # so wait to handle any interrupts (that normally log a failure event) until the success
    # event has finished
    with delay_interrupts():
        yield DagsterEvent.step_success_event(
            step_context, StepSuccessData(duration_ms=timer_result.millis))
예제 #14
0
def core_dagster_event_sequence_for_step(
        step_context: SystemStepExecutionContext,
        prior_attempt_count: int) -> Iterator[DagsterEvent]:
    """
    Execute the step within the step_context argument given the in-memory
    events. This function yields a sequence of DagsterEvents, but without
    catching any exceptions that have bubbled up during the computation
    of the step.
    """
    check.inst_param(step_context, "step_context", SystemStepExecutionContext)
    check.int_param(prior_attempt_count, "prior_attempt_count")
    if prior_attempt_count > 0:
        yield DagsterEvent.step_restarted_event(step_context,
                                                prior_attempt_count)
    else:
        yield DagsterEvent.step_start_event(step_context)

    inputs = {}

    for step_input in step_context.step.step_inputs:
        input_def = step_input.source.get_input_def(step_context.pipeline_def)
        dagster_type = input_def.dagster_type

        if dagster_type.kind == DagsterTypeKind.NOTHING:
            continue

        for event_or_input_value in ensure_gen(
                step_input.source.load_input_object(step_context)):
            if isinstance(event_or_input_value, DagsterEvent):
                yield event_or_input_value
            else:
                check.invariant(step_input.name not in inputs)
                inputs[step_input.name] = event_or_input_value

    for input_name, input_value in inputs.items():
        for evt in check.generator(
                _type_checked_event_sequence_for_input(step_context,
                                                       input_name,
                                                       input_value)):
            yield evt

    with time_execution_scope() as timer_result:
        user_event_sequence = check.generator(
            _user_event_sequence_for_step_compute_fn(step_context, inputs))

        # It is important for this loop to be indented within the
        # timer block above in order for time to be recorded accurately.
        for user_event in check.generator(
                _step_output_error_checked_user_event_sequence(
                    step_context, user_event_sequence)):

            if isinstance(user_event, (Output, DynamicOutput)):
                for evt in _type_check_and_store_output(
                        step_context, user_event):
                    yield evt
            elif isinstance(user_event,
                            (AssetMaterialization, Materialization)):
                yield DagsterEvent.step_materialization(
                    step_context, user_event)
            elif isinstance(user_event, ExpectationResult):
                yield DagsterEvent.step_expectation_result(
                    step_context, user_event)
            else:
                check.failed(
                    "Unexpected event {event}, should have been caught earlier"
                    .format(event=user_event))

    yield DagsterEvent.step_success_event(
        step_context, StepSuccessData(duration_ms=timer_result.millis))
예제 #15
0
    def execute(pipeline_context, execution_plan):
        check.inst_param(pipeline_context, 'pipeline_context',
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, 'execution_plan', ExecutionPlan)

        intermediates_manager = pipeline_context.intermediates_manager

        limit = pipeline_context.executor_config.max_concurrent

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Executing steps using multiprocess engine: parent process (pid: {pid})'
            .format(pid=os.getpid()),
            event_specific_data=EngineEventData.multiprocess(
                os.getpid(),
                step_keys_to_execute=execution_plan.step_keys_to_execute),
        )

        # It would be good to implement a reference tracking algorithm here so we could
        # garbage collection results that are no longer needed by any steps
        # https://github.com/dagster-io/dagster/issues/811
        with time_execution_scope() as timer_result:

            active_execution = execution_plan.start(
                retries=pipeline_context.executor_config.retries)
            active_iters = {}
            errors = {}
            term_events = {}
            stopping = False

            while (not stopping
                   and not active_execution.is_complete) or active_iters:
                try:
                    # start iterators
                    while len(active_iters) < limit and not stopping:
                        steps = active_execution.get_steps_to_execute(
                            limit=(limit - len(active_iters)))

                        if not steps:
                            break

                        for step in steps:
                            step_context = pipeline_context.for_step(step)
                            term_events[
                                step.key] = get_multiprocessing_context(
                                ).Event()
                            active_iters[
                                step.key] = execute_step_out_of_process(
                                    step_context, step, errors, term_events)

                    # process active iterators
                    empty_iters = []
                    for key, step_iter in active_iters.items():
                        try:
                            event_or_none = next(step_iter)
                            if event_or_none is None:
                                continue
                            else:
                                yield event_or_none
                                active_execution.handle_event(event_or_none)

                        except StopIteration:
                            empty_iters.append(key)

                    # clear and mark complete finished iterators
                    for key in empty_iters:
                        del active_iters[key]
                        if term_events[key].is_set():
                            stopping = True
                        del term_events[key]
                        active_execution.verify_complete(pipeline_context, key)

                    # process skips from failures or uncovered inputs
                    for event in active_execution.skipped_step_events_iterator(
                            pipeline_context):
                        yield event

                # In the very small chance that we get interrupted in this coordination section and not
                # polling the subprocesses for events - try to clean up gracefully
                except KeyboardInterrupt:
                    yield DagsterEvent.engine_event(
                        pipeline_context,
                        'Multiprocess engine: received KeyboardInterrupt - forwarding to active child processes',
                        EngineEventData.interrupted(list(term_events.keys())),
                    )
                    stopping = True
                    for event in term_events.values():
                        event.set()

            errs = {pid: err for pid, err in errors.items() if err}
            if errs:
                raise DagsterSubprocessError(
                    'During multiprocess execution errors occurred in child processes:\n{error_list}'
                    .format(error_list='\n'.join([
                        'In process {pid}: {err}'.format(pid=pid,
                                                         err=err.to_string())
                        for pid, err in errs.items()
                    ])),
                    subprocess_error_infos=list(errs.values()),
                )

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Multiprocess engine: parent process exiting after {duration} (pid: {pid})'
            .format(duration=format_duration(timer_result.millis),
                    pid=os.getpid()),
            event_specific_data=EngineEventData.multiprocess(os.getpid()),
        )
예제 #16
0
def core_dagster_event_sequence_for_step(step_context, prior_attempt_count):
    """
    Execute the step within the step_context argument given the in-memory
    events. This function yields a sequence of DagsterEvents, but without
    catching any exceptions that have bubbled up during the computation
    of the step.
    """
    check.inst_param(step_context, "step_context", SystemStepExecutionContext)
    check.int_param(prior_attempt_count, "prior_attempt_count")
    if prior_attempt_count > 0:
        yield DagsterEvent.step_restarted_event(step_context,
                                                prior_attempt_count)
    else:
        yield DagsterEvent.step_start_event(step_context)

    inputs = {}
    for input_name, input_value in _load_input_values(step_context):
        # TODO yuhan retire ObjectStoreOperation https://github.com/dagster-io/dagster/issues/3043
        if isinstance(input_value, ObjectStoreOperation):
            yield DagsterEvent.object_store_operation(
                step_context,
                ObjectStoreOperation.serializable(input_value,
                                                  value_name=input_name))
            inputs[input_name] = input_value.obj
        elif isinstance(input_value, FanInStepInputValuesWrapper):
            final_values = []
            for inner_value in input_value:
                # inner value is either a store interaction
                # TODO yuhan retire ObjectStoreOperation https://github.com/dagster-io/dagster/issues/3043
                if isinstance(inner_value, ObjectStoreOperation):
                    yield DagsterEvent.object_store_operation(
                        step_context,
                        ObjectStoreOperation.serializable(
                            inner_value, value_name=input_name),
                    )
                    final_values.append(inner_value.obj)
                elif isinstance(inner_value, AssetStoreOperation):
                    yield DagsterEvent.asset_store_operation(
                        step_context,
                        AssetStoreOperation.serializable(inner_value))
                    final_values.append(inner_value.obj)
                # or the value directly
                else:
                    final_values.append(inner_value)

            inputs[input_name] = final_values
        elif isinstance(input_value, AssetStoreOperation):
            yield DagsterEvent.asset_store_operation(
                step_context, AssetStoreOperation.serializable(input_value))
            inputs[input_name] = input_value.obj
        else:
            inputs[input_name] = input_value

    for input_name, input_value in inputs.items():
        for evt in check.generator(
                _type_checked_event_sequence_for_input(step_context,
                                                       input_name,
                                                       input_value)):
            yield evt

    with time_execution_scope() as timer_result:
        user_event_sequence = check.generator(
            _user_event_sequence_for_step_compute_fn(step_context, inputs))

        # It is important for this loop to be indented within the
        # timer block above in order for time to be recorded accurately.
        for user_event in check.generator(
                _step_output_error_checked_user_event_sequence(
                    step_context, user_event_sequence)):

            if isinstance(user_event, (Output, DynamicOutput)):
                for evt in _create_step_events_for_output(
                        step_context, user_event):
                    yield evt
            elif isinstance(user_event,
                            (AssetMaterialization, Materialization)):
                yield DagsterEvent.step_materialization(
                    step_context, user_event)
            elif isinstance(user_event, ExpectationResult):
                yield DagsterEvent.step_expectation_result(
                    step_context, user_event)
            else:
                check.failed(
                    "Unexpected event {event}, should have been caught earlier"
                    .format(event=user_event))

    yield DagsterEvent.step_success_event(
        step_context, StepSuccessData(duration_ms=timer_result.millis))
예제 #17
0
    def execute(pipeline_context, execution_plan):
        check.inst_param(pipeline_context, 'pipeline_context',
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, 'execution_plan', ExecutionPlan)

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Executing steps in process (pid: {pid})'.format(pid=os.getpid()),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), execution_plan.step_keys_to_execute),
        )

        with time_execution_scope() as timer_result:
            check.param_invariant(
                isinstance(pipeline_context.executor_config, ExecutorConfig),
                'pipeline_context',
                'Expected executor_config to be ExecutorConfig got {}'.format(
                    pipeline_context.executor_config),
            )

            for event in copy_required_intermediates_for_execution(
                    pipeline_context, execution_plan):
                yield event

            # It would be good to implement a reference tracking algorithm here to
            # garbage collect results that are no longer needed by any steps
            # https://github.com/dagster-io/dagster/issues/811
            active_execution = execution_plan.start()
            while not active_execution.is_complete:

                steps = active_execution.get_steps_to_execute(limit=1)
                check.invariant(
                    len(steps) == 1,
                    'Invariant Violation: expected step to be available to execute'
                )
                step = steps[0]
                step_context = pipeline_context.for_step(step)
                check.invariant(
                    all(
                        hasattr(step_context.resources, resource_key) for
                        resource_key in step_context.required_resource_keys),
                    'expected step context to have all required resources',
                )

                with mirror_step_io(step_context):
                    # capture all of the logs for this step
                    uncovered_inputs = pipeline_context.intermediates_manager.uncovered_inputs(
                        step_context, step)
                    if uncovered_inputs:
                        # In partial pipeline execution, we may end up here without having validated the
                        # missing dependent outputs were optional
                        _assert_missing_inputs_optional(
                            uncovered_inputs, execution_plan, step.key)

                        step_context.log.info((
                            'Not all inputs covered for {step}. Not executing. Output missing for '
                            'inputs: {uncovered_inputs}').format(
                                uncovered_inputs=uncovered_inputs,
                                step=step.key))
                        yield DagsterEvent.step_skipped_event(step_context)
                        active_execution.mark_skipped(step.key)
                        continue

                    for step_event in check.generator(
                            dagster_event_sequence_for_step(step_context)):
                        check.inst(step_event, DagsterEvent)
                        yield step_event
                        active_execution.handle_event(step_event)

                    active_execution.verify_complete(pipeline_context,
                                                     step.key)

                # process skips from failures or uncovered inputs
                for event in active_execution.skipped_step_events_iterator(
                        pipeline_context):
                    yield event

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Finished steps in process (pid: {pid}) in {duration_ms}'.format(
                pid=os.getpid(),
                duration_ms=format_duration(timer_result.millis)),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), execution_plan.step_keys_to_execute),
        )
예제 #18
0
def core_dagster_event_sequence_for_step(
    step_context: StepExecutionContext,
) -> Iterator[DagsterEvent]:
    """
    Execute the step within the step_context argument given the in-memory
    events. This function yields a sequence of DagsterEvents, but without
    catching any exceptions that have bubbled up during the computation
    of the step.
    """
    check.inst_param(step_context, "step_context", StepExecutionContext)

    if step_context.previous_attempt_count > 0:
        yield DagsterEvent.step_restarted_event(step_context, step_context.previous_attempt_count)
    else:
        yield DagsterEvent.step_start_event(step_context)

    inputs = {}

    for step_input in step_context.step.step_inputs:
        input_def = step_input.source.get_input_def(step_context.pipeline_def)
        dagster_type = input_def.dagster_type

        if dagster_type.kind == DagsterTypeKind.NOTHING:
            continue
        for event_or_input_value in ensure_gen(step_input.source.load_input_object(step_context)):
            if isinstance(event_or_input_value, DagsterEvent):
                yield event_or_input_value
            else:
                check.invariant(step_input.name not in inputs)
                inputs[step_input.name] = event_or_input_value

    for input_name, input_value in inputs.items():
        for evt in check.generator(
            _type_checked_event_sequence_for_input(step_context, input_name, input_value)
        ):
            yield evt

    input_lineage = step_context.get_input_lineage()

    # The core execution loop expects a compute generator in a specific format: a generator that
    # takes a context and dictionary of inputs as input, yields output events. If a solid definition
    # was generated from the @solid or @lambda_solid decorator, then compute_fn needs to be coerced
    # into this format. If the solid definition was created directly, then it is expected that the
    # compute_fn is already in this format.
    if isinstance(step_context.solid_def.compute_fn, DecoratedSolidFunction):
        core_gen = create_solid_compute_wrapper(step_context.solid_def)
    else:
        core_gen = step_context.solid_def.compute_fn

    with time_execution_scope() as timer_result:
        user_event_sequence = check.generator(
            execute_core_compute(
                step_context,
                inputs,
                core_gen,
            )
        )

        # It is important for this loop to be indented within the
        # timer block above in order for time to be recorded accurately.
        for user_event in check.generator(
            _step_output_error_checked_user_event_sequence(step_context, user_event_sequence)
        ):
            if isinstance(user_event, DagsterEvent):
                yield user_event
            elif isinstance(user_event, (Output, DynamicOutput)):
                for evt in _type_check_and_store_output(step_context, user_event, input_lineage):
                    yield evt
            # for now, I'm ignoring AssetMaterializations yielded manually, but we might want
            # to do something with these in the above path eventually
            elif isinstance(user_event, (AssetMaterialization, Materialization)):
                yield DagsterEvent.asset_materialization(step_context, user_event, input_lineage)
            elif isinstance(user_event, AssetObservation):
                yield DagsterEvent.asset_observation(step_context, user_event)
            elif isinstance(user_event, ExpectationResult):
                yield DagsterEvent.step_expectation_result(step_context, user_event)
            else:
                check.failed(
                    "Unexpected event {event}, should have been caught earlier".format(
                        event=user_event
                    )
                )

    yield DagsterEvent.step_success_event(
        step_context, StepSuccessData(duration_ms=timer_result.millis)
    )
예제 #19
0
    def execute(pipeline_context, execution_plan):
        check.inst_param(pipeline_context, 'pipeline_context',
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, 'execution_plan', ExecutionPlan)

        step_levels = execution_plan.execution_step_levels()
        step_key_set = set(step.key for step_level in step_levels
                           for step in step_level)

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Executing steps in process (pid: {pid})'.format(pid=os.getpid()),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), step_key_set),
        )

        with time_execution_scope() as timer_result:
            check.param_invariant(
                isinstance(pipeline_context.executor_config, ExecutorConfig),
                'pipeline_context',
                'Expected executor_config to be ExecutorConfig got {}'.format(
                    pipeline_context.executor_config),
            )

            for event in copy_required_intermediates_for_execution(
                    pipeline_context, execution_plan):
                yield event

            failed_or_skipped_steps = set()

            # It would be good to implement a reference tracking algorithm here to
            # garbage collect results that are no longer needed by any steps
            # https://github.com/dagster-io/dagster/issues/811
            for step_level in step_levels:
                for step in step_level:
                    step_context = pipeline_context.for_step(step)

                    with mirror_step_io(step_context):
                        # capture all of the logs for this step

                        failed_inputs = []
                        for step_input in step.step_inputs:
                            failed_inputs.extend(
                                failed_or_skipped_steps.intersection(
                                    step_input.dependency_keys))

                        if failed_inputs:
                            step_context.log.info((
                                'Dependencies for step {step} failed: {failed_inputs}. Not executing.'
                            ).format(step=step.key,
                                     failed_inputs=failed_inputs))
                            failed_or_skipped_steps.add(step.key)
                            yield DagsterEvent.step_skipped_event(step_context)
                            continue

                        uncovered_inputs = pipeline_context.intermediates_manager.uncovered_inputs(
                            step_context, step)
                        if uncovered_inputs:
                            # In partial pipeline execution, we may end up here without having validated the
                            # missing dependent outputs were optional
                            _assert_missing_inputs_optional(
                                uncovered_inputs, execution_plan, step.key)

                            step_context.log.info((
                                'Not all inputs covered for {step}. Not executing. Output missing for '
                                'inputs: {uncovered_inputs}').format(
                                    uncovered_inputs=uncovered_inputs,
                                    step=step.key))
                            failed_or_skipped_steps.add(step.key)
                            yield DagsterEvent.step_skipped_event(step_context)
                            continue

                        for step_event in check.generator(
                                dagster_event_sequence_for_step(step_context)):
                            check.inst(step_event, DagsterEvent)
                            if step_event.is_step_failure:
                                failed_or_skipped_steps.add(step.key)

                            yield step_event

        yield DagsterEvent.engine_event(
            pipeline_context,
            'Finished steps in process (pid: {pid}) in {duration_ms}'.format(
                pid=os.getpid(),
                duration_ms=format_duration(timer_result.millis)),
            event_specific_data=EngineEventData.in_process(
                os.getpid(), step_key_set),
        )
예제 #20
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context", SystemPipelineExecutionContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)

        limit = self.max_concurrent

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Executing steps using multithread executor (pid: {pid})".format(pid=os.getpid()),
            event_specific_data=EngineEventData.in_process(os.getpid(), execution_plan.step_keys_to_execute),
        )

        with time_execution_scope() as timer_result:
            with execution_plan.start(retries=self.retries) as active_execution:
                active_iters = {}
                errors = {}

                while not active_execution.is_complete or active_iters:

                    # start iterators
                    while len(active_iters) < limit:
                        steps = active_execution.get_steps_to_execute(limit=(limit - len(active_iters)))

                        if not steps:
                            break

                        for step in steps:
                            step_context = pipeline_context.for_step(step)
                            active_iters[step.key] = self.execute_step_in_thread(step.key, step_context, errors)

                    # process active iterators
                    empty_iters = []
                    for key, step_iter in active_iters.items():
                        try:
                            event_or_none = next(step_iter)
                            if event_or_none is None:
                                continue
                            yield event_or_none
                            active_execution.handle_event(event_or_none)

                        except ThreadCrashException:
                            serializable_error = serializable_error_info_from_exc_info(sys.exc_info())
                            yield DagsterEvent.engine_event(
                                pipeline_context,
                                f"Multithread executor: thread for step {key} exited unexpectedly",
                                EngineEventData.engine_error(serializable_error),
                            )
                            step_failure_event = DagsterEvent.step_failure_event(
                                step_context=pipeline_context.for_step(active_execution.get_step_by_key(key)),
                                step_failure_data=StepFailureData(error=serializable_error, user_failure_data=None),
                            )
                            active_execution.handle_event(step_failure_event)
                            yield step_failure_event
                            empty_iters.append(key)
                        except StopIteration:
                            empty_iters.append(key)

                    # clear and mark complete finished iterators
                    for key in empty_iters:
                        del active_iters[key]
                        active_execution.verify_complete(pipeline_context, key)

                    # process skipped and abandoned steps
                    for event in active_execution.plan_events_iterator(pipeline_context):
                        yield event

                errs = {tid: err for tid, err in errors.items() if err}
                if errs:
                    raise DagsterThreadError(
                        "During multithread execution errors occurred in threads:\n{error_list}".format(
                            error_list="\n".join(
                                [
                                    "In thread {tid}: {err}".format(tid=tid, err=err.to_string())
                                    for tid, err in errs.items()
                                ]
                            )
                        ),
                        thread_error_infos=list(errs.values()),
                    )

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Multithread executor: parent process exiting after {duration} (pid: {pid})".format(
                duration=format_duration(timer_result.millis), pid=os.getpid()
            ),
            event_specific_data=EngineEventData.multiprocess(os.getpid()),
        )
예제 #21
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context",
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)

        limit = self.max_concurrent

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Executing steps using multiprocess engine: parent process (pid: {pid})"
            .format(pid=os.getpid()),
            event_specific_data=EngineEventData.multiprocess(
                os.getpid(),
                step_keys_to_execute=execution_plan.step_keys_to_execute),
        )

        # It would be good to implement a reference tracking algorithm here so we could
        # garbage collection results that are no longer needed by any steps
        # https://github.com/dagster-io/dagster/issues/811
        with time_execution_scope() as timer_result:

            with execution_plan.start(
                    retries=self.retries) as active_execution:
                active_iters = {}
                errors = {}
                term_events = {}
                stopping = False

                while (not stopping
                       and not active_execution.is_complete) or active_iters:
                    try:
                        # start iterators
                        while len(active_iters) < limit and not stopping:
                            steps = active_execution.get_steps_to_execute(
                                limit=(limit - len(active_iters)))

                            if not steps:
                                break

                            for step in steps:
                                step_context = pipeline_context.for_step(step)
                                term_events[step.key] = multiprocessing.Event()
                                active_iters[
                                    step.
                                    key] = self.execute_step_out_of_process(
                                        step_context, step, errors,
                                        term_events)

                        # process active iterators
                        empty_iters = []
                        for key, step_iter in active_iters.items():
                            try:
                                event_or_none = next(step_iter)
                                if event_or_none is None:
                                    continue
                                else:
                                    yield event_or_none
                                    active_execution.handle_event(
                                        event_or_none)

                            except ChildProcessCrashException as crash:
                                serializable_error = serializable_error_info_from_exc_info(
                                    sys.exc_info())
                                yield DagsterEvent.engine_event(
                                    pipeline_context,
                                    ("Multiprocess executor: child process for step {step_key} "
                                     "unexpectedly exited with code {exit_code}"
                                     ).format(step_key=key,
                                              exit_code=crash.exit_code),
                                    EngineEventData.engine_error(
                                        serializable_error),
                                    step_key=key,
                                )
                                step_failure_event = DagsterEvent.step_failure_event(
                                    step_context=pipeline_context.for_step(
                                        active_execution.get_step_by_key(key)),
                                    step_failure_data=StepFailureData(
                                        error=serializable_error,
                                        user_failure_data=None),
                                )
                                active_execution.handle_event(
                                    step_failure_event)
                                yield step_failure_event
                                empty_iters.append(key)
                            except StopIteration:
                                empty_iters.append(key)

                        # clear and mark complete finished iterators
                        for key in empty_iters:
                            del active_iters[key]
                            if term_events[key].is_set():
                                stopping = True
                            del term_events[key]
                            active_execution.verify_complete(
                                pipeline_context, key)

                        # process skips from failures or uncovered inputs
                        for event in active_execution.skipped_step_events_iterator(
                                pipeline_context):
                            yield event

                    # In the very small chance that we get interrupted in this coordination section and not
                    # polling the subprocesses for events - try to clean up gracefully
                    except KeyboardInterrupt:
                        yield DagsterEvent.engine_event(
                            pipeline_context,
                            "Multiprocess engine: received KeyboardInterrupt - forwarding to active child processes",
                            EngineEventData.interrupted(
                                list(term_events.keys())),
                        )
                        stopping = True
                        for event in term_events.values():
                            event.set()

                errs = {pid: err for pid, err in errors.items() if err}
                if errs:
                    raise DagsterSubprocessError(
                        "During multiprocess execution errors occurred in child processes:\n{error_list}"
                        .format(error_list="\n".join([
                            "In process {pid}: {err}".format(
                                pid=pid, err=err.to_string())
                            for pid, err in errs.items()
                        ])),
                        subprocess_error_infos=list(errs.values()),
                    )

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Multiprocess engine: parent process exiting after {duration} (pid: {pid})"
            .format(duration=format_duration(timer_result.millis),
                    pid=os.getpid()),
            event_specific_data=EngineEventData.multiprocess(os.getpid()),
        )
예제 #22
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context",
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)

        limit = self.max_concurrent

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Executing steps using multiprocess executor: parent process (pid: {pid})"
            .format(pid=os.getpid()),
            event_specific_data=EngineEventData.multiprocess(
                os.getpid(),
                step_keys_to_execute=execution_plan.step_keys_to_execute),
        )

        # It would be good to implement a reference tracking algorithm here so we could
        # garbage collect results that are no longer needed by any steps
        # https://github.com/dagster-io/dagster/issues/811
        with time_execution_scope() as timer_result:
            with execution_plan.start(
                    retry_mode=self.retries) as active_execution:
                active_iters = {}
                errors = {}
                term_events = {}
                stopping = False

                while (not stopping
                       and not active_execution.is_complete) or active_iters:
                    if active_execution.check_for_interrupts():
                        yield DagsterEvent.engine_event(
                            pipeline_context,
                            "Multiprocess executor: received termination signal - "
                            "forwarding to active child processes",
                            EngineEventData.interrupted(
                                list(term_events.keys())),
                        )
                        stopping = True
                        active_execution.mark_interrupted()
                        for key, event in term_events.items():
                            event.set()

                    # start iterators
                    while len(active_iters) < limit and not stopping:
                        steps = active_execution.get_steps_to_execute(
                            limit=(limit - len(active_iters)))

                        if not steps:
                            break

                        for step in steps:
                            step_context = pipeline_context.for_step(step)
                            term_events[step.key] = multiprocessing.Event()
                            active_iters[
                                step.key] = self.execute_step_out_of_process(
                                    step_context,
                                    step,
                                    errors,
                                    term_events,
                                    active_execution.get_known_state(),
                                )

                    # process active iterators
                    empty_iters = []
                    for key, step_iter in active_iters.items():
                        try:
                            event_or_none = next(step_iter)
                            if event_or_none is None:
                                continue
                            else:
                                yield event_or_none
                                active_execution.handle_event(event_or_none)

                        except ChildProcessCrashException as crash:
                            serializable_error = serializable_error_info_from_exc_info(
                                sys.exc_info())
                            yield DagsterEvent.engine_event(
                                pipeline_context,
                                ("Multiprocess executor: child process for step {step_key} "
                                 "unexpectedly exited with code {exit_code}"
                                 ).format(step_key=key,
                                          exit_code=crash.exit_code),
                                EngineEventData.engine_error(
                                    serializable_error),
                                step_handle=active_execution.get_step_by_key(
                                    key).handle,
                            )
                            step_failure_event = DagsterEvent.step_failure_event(
                                step_context=pipeline_context.for_step(
                                    active_execution.get_step_by_key(key)),
                                step_failure_data=StepFailureData(
                                    error=serializable_error,
                                    user_failure_data=None),
                            )
                            active_execution.handle_event(step_failure_event)
                            yield step_failure_event
                            empty_iters.append(key)
                        except StopIteration:
                            empty_iters.append(key)

                    # clear and mark complete finished iterators
                    for key in empty_iters:
                        del active_iters[key]
                        del term_events[key]
                        active_execution.verify_complete(pipeline_context, key)

                    # process skipped and abandoned steps
                    yield from active_execution.plan_events_iterator(
                        pipeline_context)

                errs = {pid: err for pid, err in errors.items() if err}

                # After termination starts, raise an interrupted exception once all subprocesses
                # have finished cleaning up (and the only errors were from being interrupted)
                if (stopping and (not active_iters) and all([
                        err_info.cls_name == "DagsterExecutionInterruptedError"
                        for err_info in errs.values()
                ])):
                    yield DagsterEvent.engine_event(
                        pipeline_context,
                        "Multiprocess executor: interrupted all active child processes",
                        event_specific_data=EngineEventData(),
                    )
                    raise DagsterExecutionInterruptedError()
                elif errs:
                    raise DagsterSubprocessError(
                        "During multiprocess execution errors occurred in child processes:\n{error_list}"
                        .format(error_list="\n".join([
                            "In process {pid}: {err}".format(
                                pid=pid, err=err.to_string())
                            for pid, err in errs.items()
                        ])),
                        subprocess_error_infos=list(errs.values()),
                    )

        yield DagsterEvent.engine_event(
            pipeline_context,
            "Multiprocess executor: parent process exiting after {duration} (pid: {pid})"
            .format(duration=format_duration(timer_result.millis),
                    pid=os.getpid()),
            event_specific_data=EngineEventData.multiprocess(os.getpid()),
        )