def test_nb_op(name, path, **kwargs): output_defs = kwargs.pop("output_defs", [OutputDefinition(is_required=False)]) return dagstermill.define_dagstermill_op( name=name, notebook_path=path, output_notebook_name="notebook", output_defs=output_defs, **kwargs, )
import dagstermill as dm from dagster import job from dagster.utils import script_relative_path k_means_iris = dm.define_dagstermill_op( "k_means_iris", script_relative_path("iris-kmeans.ipynb"), output_notebook_name="iris_kmeans_output", ) @job(resource_defs={ "output_notebook_io_manager": dm.local_output_notebook_io_manager, }) def iris_classify(): k_means_iris()
import dagstermill as dm from dagster import Field, InputDefinition, Int, job from dagster.utils import script_relative_path from docs_snippets.legacy.data_science.download_file import download_file k_means_iris = dm.define_dagstermill_op( "k_means_iris", script_relative_path("iris-kmeans_2.ipynb"), output_notebook_name="iris_kmeans_output", input_defs=[ InputDefinition("path", str, description="Local path to the Iris dataset") ], config_schema=Field(Int, default_value=3, is_required=False, description="The number of clusters to find"), ) @job(resource_defs={ "output_notebook_io_manager": dm.local_output_notebook_io_manager, }) def iris_classify(): k_means_iris(download_file())
import dagstermill as dm from dagster import InputDefinition, job from dagster.utils import script_relative_path from docs_snippets.legacy.data_science.download_file import download_file k_means_iris = dm.define_dagstermill_op( "k_means_iris", script_relative_path("iris-kmeans_2.ipynb"), output_notebook_name="iris_kmeans_output", input_defs=[ InputDefinition("path", str, description="Local path to the Iris dataset") ], ) @job(resource_defs={ "output_notebook_io_manager": dm.local_output_notebook_io_manager, }) def iris_classify(): k_means_iris(download_file())