t2v_model_user = load_T2V_model(t2v_model_user) embedding_dim_user = t2v_model_user.model.vector_size if dblp.ae_data_exist( file_path='../dataset/ae_t2v_dimSkill{}_dimUser{}_tFull_dataset.pkl'. format(embedding_dim_skill, embedding_dim_user)): dataset = dblp.load_ae_dataset( file_path='../dataset/ae_t2v_dimSkill{}_dimUser{}_tFull_dataset.pkl'. format(embedding_dim_skill, embedding_dim_user)) else: if not dblp.ae_data_exist(file_path='../dataset/ae_dataset.pkl'): dblp.extract_data(filter_journals=True, skill_size_filter=min_skill_size, member_size_filter=min_member_size) if not dblp.preprocessed_dataset_exist( ) or not dblp.train_test_indices_exist(): dblp.dataset_preprocessing( dblp.load_ae_dataset(file_path='../dataset/ae_dataset.pkl'), seed=seed, kfolds=k_fold) preprocessed_dataset = dblp.load_preprocessed_dataset() dblp.nn_t2v_dataset_generator( { 'skill': t2v_model_skill, 'user': t2v_model_user }, preprocessed_dataset, output_file_path= '../dataset/ae_t2v_dimSkill{}_dimUser{}_tFull_dataset.pkl'.format( embedding_dim_skill, embedding_dim_user),
k_fold = 10 k_max = 100 evaluation_k_set = np.arange(1, k_max + 1, 1) #nn settings epochs_in_batch = 25 epochs_overall = 10 back_propagation_batch_size = 64 training_batch_size = 6000 min_skill_size = 0 min_member_size = 0 latent_dim = 50 print(K.tensorflow_backend._get_available_gpus()) if dblp.preprocessed_dataset_exist() and dblp.train_test_indices_exist(): dataset = dblp.load_preprocessed_dataset() train_test_indices = dblp.load_train_test_indices() else: if not dblp.ae_data_exist(file_path='../dataset/ae_dataset.pkl'): dblp.extract_data(filter_journals=True, skill_size_filter=min_skill_size, member_size_filter=min_member_size) if not dblp.preprocessed_dataset_exist( ) or not dblp.train_test_indices_exist(): dblp.dataset_preprocessing( dblp.load_ae_dataset(file_path='../dataset/ae_dataset.pkl'), seed=seed, kfolds=k_fold) dataset = dblp.load_preprocessed_dataset() train_test_indices = dblp.load_train_test_indices()
training_batch_size = 6000 min_skill_size = 0 min_member_size = 0 latent_dim = 2 beta = 30 print(tf.test.is_gpu_available()) m2v_path = '../dataset/embedding_dict.pkl' if dblp.ae_data_exist(file_path='../dataset/ae_e_m2v_tSkill_dataset.pkl'): dataset = dblp.load_ae_dataset(file_path='../dataset/ae_e_m2v_tSkill_dataset.pkl') else: if not dblp.ae_data_exist(file_path='../dataset/ae_dataset.pkl'): dblp.extract_data(filter_journals=True, skill_size_filter=min_skill_size, member_size_filter=min_member_size, output_dir='../dataset/ae_dataset.pkl') if not dblp.preprocessed_dataset_exist(file_path='../dataset/dblp_preprocessed_dataset.pkl') or not dblp.train_test_indices_exist(file_path='../dataset/Train_Test_indices.pkl'): dblp.dataset_preprocessing(dblp.load_ae_dataset(file_path='../dataset/ae_dataset.pkl'), indices_dict_file_path='../dataset/Train_Test_indices.pkl', preprocessed_dataset_file_path='../dataset/dblp_preprocessed_dataset.pkl', seed=seed, kfolds=k_fold) preprocessed_dataset = dblp.load_preprocessed_dataset(file_path='../dataset/dblp_preprocessed_dataset.pkl') dblp.nn_m2v_embedding_dataset_generator(model_path=m2v_path, dataset=preprocessed_dataset, output_file_path='../dataset/ae_e_m2v_tSkill_dataset.pkl', mode='skill', max_length=22) del preprocessed_dataset dataset = dblp.load_ae_dataset(file_path='../dataset/ae_e_m2v_tSkill_dataset.pkl') # reparameterization trick # instead of sampling from Q(z|X), sample epsilon = N(0,I) # z = z_mean + sqrt(var) * epsilon def sampling(args): """Reparameterization trick by sampling from an isotropic unit Gaussian.