예제 #1
0
파일: tasks.py 프로젝트: whmrtm/daqmx
 def read(self):
     """Reads from the channels in the task."""
     array_size_samps = self.sample_rate * self.samples_per_channel
     fillmode = daqmx.parameters[self.fillmode]
     if self.task_type == "analog input":
         self.newdata, self.samples_per_channel_received = daqmx.ReadAnalogF64(
             self.handle, self.samples_per_channel, self.timeout, fillmode,
             array_size_samps, len(self.channels))
     if self.append_data:
         self.newdf = pd.DataFrame()
         if self.time_array:
             newtime = np.arange(self.samples_per_channel_received +
                                 1) / self.sample_rate
             if len(self.data["time"]) == 0:
                 self.newdf["time"] = newtime[:-1]
             else:
                 last_time = self.data["time"].values[-1]
                 newtime += last_time
                 self.newdf["time"] = newtime[1:]
         for n, channel in enumerate(self.channels):
             self.newdf[channel.name] = self.newdata[:, n]
         self.data = self.data.append(self.newdf, ignore_index=False)
         if self.autolog:
             self.do_autolog()
         if self.autotrim:
             self.autotrim_dataframe()
     return self.newdata, self.samples_per_channel_received
예제 #2
0
def EveryNCallback_py(taskHandle, everyNsamplesEventType, nSamples,
                      callbackData_ptr):

    callbackdata = daqmx.get_callbackdata_from_id(callbackData_ptr)

    data, npoints = daqmx.ReadAnalogF64(taskHandle, buffsize, 10.0,
                                        daqmx.Val_GroupByChannel, buffsize, 1)

    callbackdata.extend(data.tolist())
    print "Acquired %d samples" % len(data)
    saved_data = np.load(filename)
    new_saved_data = np.append(saved_data, np.asarray(data))
    np.save(filename, new_saved_data)
    return 0  # The function should return an integer
예제 #3
0
파일: daqmx_pyqt.py 프로젝트: whmrtm/daqmx
 def get_data(self):
     while True:
         # Parameters for analog read        
         samps_per_chan = int(self.sr/10)
         timeout = 10
         fillmode = daqmx.Val_GroupByChannel
         array_size_samps = 1000
         nchan = 1
         
         data1, spc = daqmx.ReadAnalogF64(self.th, samps_per_chan, 
                                          timeout, fillmode, 
                                          array_size_samps, nchan)
                                          
         self.data = np.append(self.data, data1[:,0])
예제 #4
0
파일: tests.py 프로젝트: whmrtm/daqmx
 def EveryNCallback_py(taskHandle, everyNsamplesEventType, nSamples,
                       callbackData_ptr):
     """Function called every N samples"""
     callbackdata = daqmx.get_callbackdata_from_id(callbackData_ptr)
     data, npoints = daqmx.ReadAnalogF64(taskHandle, self.nsamps, 10.0,
                                         daqmx.Val_GroupByChannel,
                                         self.nsamps,
                                         len(self.analogchans))
     callbackdata.extend(data.tolist())
     self.data["torque_trans"] = np.append(self.data["torque_trans"],
                                           data[:, 0],
                                           axis=0)
     self.data["torque_arm"] = np.append(self.data["torque_arm"],
                                         data[:, 1],
                                         axis=0)
     self.data["drag_left"] = np.append(self.data["drag_left"],
                                        data[:, 2],
                                        axis=0)
     self.data["drag_right"] = np.append(self.data["drag_right"],
                                         data[:, 3],
                                         axis=0)
     self.data["t"] = np.arange(len(self.data["torque_trans"]),
                                dtype=float) / self.sr
     carpos, cpoints = daqmx.ReadCounterF64(self.carpostask,
                                            self.nsamps, 10.0,
                                            self.nsamps)
     self.data["carriage_pos"] = np.append(self.data["carriage_pos"],
                                           carpos)
     turbang, cpoints = daqmx.ReadCounterF64(self.turbangtask,
                                             self.nsamps, 10.0,
                                             self.nsamps)
     self.data["turbine_angle"] = np.append(self.data["turbine_angle"],
                                            turbang)
     self.data["turbine_rpm"] \
         = ts.smooth(fdiff.second_order_diff(self.data["turbine_angle"],
                                   self.data["t"])/6.0, 50)
     return 0  # The function should return an integer
예제 #5
0
 def get_observation(self):
     read_t, _ = daqmx.ReadAnalogF64(self.AItask,self.i_size,self.timeout,self.mode,self.i_size,self.num_i)
     return read_t / self.sens_coff
예제 #6
0
daqmx.CreateAOVoltageChan(AOtaskHandle, "Dev1/ao0", "", -10.0, 10.0,
                          daqmx.Val_Volts, None)

daqmx.CfgSampClkTiming(AOtaskHandle, "", sr, daqmx.Val_Rising,
                       daqmx.Val_ContSamps, 1000)

daqmx.CreateAIVoltageChan(AItaskHandle, "Dev1/ai1", "", daqmx.Val_Diff, -10.0,
                          10.0, daqmx.Val_Volts, None)

daqmx.CfgSampClkTiming(AItaskHandle, "", sr, daqmx.Val_Rising,
                       daqmx.Val_ContSamps, 1000)

written = daqmx.WriteAnalogF64(AOtaskHandle, 1000, 0, 10.0,
                               daqmx.Val_GroupByChannel, data)

dataread, nread = daqmx.ReadAnalogF64(AItaskHandle, 1000, 10.0,
                                      daqmx.Val_GroupByChannel, 1000, 1)

daqmx.StartTask(AOtaskHandle)
daqmx.StartTask(AItaskHandle)

print written, "samples written"
print nread, "samples read"

plt.plot(dataread)

daqmx.StopTask(AItaskHandle)
daqmx.ClearTask(AItaskHandle)
daqmx.StopTask(AOtaskHandle)
daqmx.ClearTask(AOtaskHandle)
예제 #7
0
파일: ai_example.py 프로젝트: whmrtm/daqmx
def main():

    # Task parameters
    taskhandle = daqmx.TaskHandle()
    daqmx.CreateTask("", taskhandle)
    phys_chan = b"Dev1/ai0"
    nchan = 1
    sr = 100.0
    dt = 1 / sr
    totaltime = 3
    nloops = int(sr * totaltime / 10)

    # Analog read parameters
    samps_per_chan = 10
    timeout = 10
    fillmode = daqmx.Val_GroupByChannel
    array_size_samps = 1000

    daqmx.CreateAIVoltageChan(taskhandle, phys_chan, "", daqmx.Val_Diff, -10.0,
                              10.0, daqmx.Val_Volts, None)

    daqmx.CfgSampClkTiming(taskhandle, "", sr, daqmx.Val_Rising,
                           daqmx.Val_ContSamps, 1000)

    # Parameters for plotting
    plotting = True
    plot_dynamic = True

    if plotting == True and plot_dynamic == True:
        plt.ioff()
        fig = plt.figure()
        ax = fig.add_subplot(111)
        line, = ax.plot([], )
        fig.show()

    daqmx.StartTask(taskhandle, fatalerror=False)

    v = np.array([])

    for n in range(nloops):
        data, spc = daqmx.ReadAnalogF64(taskhandle, samps_per_chan, timeout,
                                        fillmode, array_size_samps, nchan)
        v = np.append(v, data[:, 0])
        time.sleep(0.001)
        t = np.float64(range(len(v))) * dt

        if plotting == True and plot_dynamic == True:
            line.set_xdata(t)
            line.set_ydata(v)
            ax.relim()
            ax.autoscale_view()
            fig.canvas.draw()

    daqmx.ClearTask(taskhandle)
    print("Task complete")

    if plotting == True:
        if plot_dynamic == False:
            plt.plot(t, v)
    plt.show()

    return t, data
예제 #8
0
    def run(self, Nepisode, targetQN, train=True):
        self.setup_DAQmx()
        # Parameters for plotting
        # initiate
        seq      = np.zeros((self.num,self.NICH))
        read     = np.zeros((0,self.NCH)) 
        state_t  = np.zeros((self.SPC,self.NICH))
        b        = np.ones(self.num_mave)/self.num_mave
        tilen    = int(self.intispn / 0.01)
        # start read analog 
        daqmx.StartTask(self.AItask, fatalerror=False)
        # first loop
        # you read 
        # you do not act 
        # this loop is for caliburation of reward
        # you need to satrt writeanalog in first loop
        # 'cause the function takes time to start 
        for n in range(self.nloops):    
            read_t, _ = daqmx.ReadAnalogF64(self.AItask,self.SPC,self.TO,self.MODE,self.ASS,self.NCH)
            read_t = read_t/self.sensor_coff
        
            # moving average filter
            for ich in range(self.NICH):
                state_t[self.num_mave-1:,ich] = np.convolve(read_t[:,self.IAIs[ich]], b, mode='vaild')

            state_ave = ( np.average(np.split(state_t,int(self.num/tilen),0),axis=1) + self.dynamic_pressre )/self.dynamic_pressre
            seq[self.num-int(self.num/tilen):self.num,:] = np.round(state_ave,2)

            # action
            # adopt output timing and action zero
            if n!=10 or n!=20 or n!=40 or n!=50 or n!=60 or n!=80 or n!=90:
                daqmx.WriteAnalogF64(self.AOtask,self.OB,1,self.TO,daqmx.Val_GroupByChannel,np.zeros(self.OB))
            # reward
            reward_t  = np.average(read_t[:,self.CH100])
            self.memory.add_local(seq,0,reward_t,0)
            read = np.append(read,read_t,axis=0)
            seq = shift(seq,[-self.num/tilen,0],cval=0)

        # calibulate
        self.memory.calc_calibulation()
        # second loop
        # you read 
        # you act
        for n in range(self.nloops):
            read_t, _ = daqmx.ReadAnalogF64(self.AItask,self.SPC,self.TO,self.MODE,self.ASS,self.NCH)
            read_t = read_t/self.sensor_coff

            # moving average filter
            for ich in range(self.NICH):
                state_t[self.num_mave-1:,ich] = np.convolve(read_t[:,self.IAIs[ich]], b, mode='vaild')
            
            state_ave = ( np.average(np.split(state_t,int(self.num/tilen),0),axis=1) + self.dynamic_pressre )/self.dynamic_pressre
            seq[self.num-int(self.num/tilen):self.num,:] = np.round(state_ave,2)
            # action
            ai = self.actor.get_action(seq.reshape(-1,self.num,self.NICH), self.QN,train)
            daqmx.WriteAnalogF64(self.AOtask,self.OB,1,self.TO,daqmx.Val_GroupByChannel,self.PA[ai,:]*3)
            # reward
            reward_t  = np.average(read_t[:,self.CH100])
            self.memory.add_local(seq,ai,reward_t,0)
            read = np.append(read,read_t,axis=0)
            seq = shift(seq,[-self.num/tilen,0],cval=0)

        # third loop
        # you read 
        # you do not act
        # make sure PA turn off
        for n in range(self.nloops):
            read_t, _ = daqmx.ReadAnalogF64(self.AItask,self.SPC,self.TO,self.MODE,self.ASS,self.NCH)
            read_t = read_t/self.sensor_coff
            
            # moving average filter
            for ich in range(self.NICH):
                state_t[self.num_mave-1:,ich] = np.convolve(read_t[:,self.IAIs[ich]], b, mode='vaild')

            state_ave = ( np.average(np.split(state_t,int(self.num/tilen),0),axis=1) + self.dynamic_pressre )/self.dynamic_pressre
            seq[self.num-int(self.num/tilen):self.num,:] = np.round(state_ave,2)
            # action
            # action zero
            daqmx.WriteAnalogF64(self.AOtask,self.OB,1,self.TO,daqmx.Val_GroupByChannel,np.zeros(self.OB))
            # reward
            reward_t  = np.average(read_t[:,self.CH100])
            self.memory.add_local(seq,0,reward_t,0)
            read = np.append(read,read_t,axis=0)
            seq = shift(seq,[-self.num/tilen,0],cval=0)

        # stop DAQmx
        self.stop_DAQmx()
        # edit experience in buffer
        self.memory.edit_experience_local()
        self.save(read,Nepisode)
        total_reward = self.memory.totalreward()
        # move current experience to global buffer
        self.memory.add_global(total_reward)

        if (self.memory.len() > self.batch_num) and train:
            self.loss=self.QN.replay(self.memory,self.batch_num,self.gamma,targetQN)
            self.actor.reduce_epsilon()

            
        return total_reward, self.loss 
예제 #9
0
diTaskHandle = daqmx.TaskHandle()

daqmx.CreateTask("", aiTaskHandle)
daqmx.CreateAIVoltageChan(aiTaskHandle, "Dev1/ai0", "", daqmx.Val_Diff, 0.0,
                          10.0, daqmx.Val_Volts)

daqmx.CfgSampClkTiming(aiTaskHandle, "", 100.0, daqmx.Val_Rising,
                       daqmx.Val_ContSamps, 1000)

trigname = daqmx.GetTerminalNameWithDevPrefix(aiTaskHandle, "ai/SampleClock")

daqmx.CreateTask("", diTaskHandle)
daqmx.CreateDIChan(diTaskHandle, "Dev1/port0", "", daqmx.Val_ChanForAllLines)
daqmx.CfgSampClkTiming(diTaskHandle, trigname, 100.0, daqmx.Val_Rising,
                       daqmx.Val_ContSamps, 1000)

daqmx.StartTask(diTaskHandle)
daqmx.StartTask(aiTaskHandle)

adata = daqmx.ReadAnalogF64(aiTaskHandle, 1000, 10.0, daqmx.Val_GroupByChannel,
                            1000, 1)
ddata = daqmx.ReadDigitalU32(diTaskHandle, 1000, 10.0,
                             daqmx.Val_GroupByChannel, 1000, 1)

print adata
print ddata

daqmx.StopTask(diTaskHandle)
daqmx.StopTask(aiTaskHandle)
daqmx.ClearTask(diTaskHandle)
daqmx.ClearTask(aiTaskHandle)