def test_DARCDesign_delayed_and_risky_instantiation(): D = DesignSpaceBuilder(DA=[0.], DB=[7., 30, 30 * 6, 365], PA=[1.], PB=[0.1, 0.25, 0.5, 0.75, 0.8, 0.9, 0.99], RA=list(100 * np.linspace(0.05, 0.95, 91)), RB=[100.]).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_delay_magnitude_effect_instantiation(): '''When we are investigating the magnitide effect, we want to ask for a reasonable range of DB values. When we do this, we are going to provide a vector of proportions (RA_over_RB) which will be translated into actual RA values. ''' D = DesignSpaceBuilder(RB=[10., 100., 1_000.], RA_over_RB=np.linspace(0.05, 0.95, 19).tolist()).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_risky_initial_design_space(): D = DesignSpaceBuilder(DA=[0], DB=[0], PA=[1], PB=[0.1, 0.25, 0.5, 0.75, 0.8, 0.9, 0.99], RA=list(100 * np.linspace(0.05, 0.95, 91)), RB=[100]).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) n_designs = design_thing.all_possible_designs.shape[0] assert n_designs > 10
def test_model_design_integration_delayed(model): '''Tests integration of model and design. Basically conducts Parameter Estimation''' D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 19))).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=max_trials) model = model(n_particles=n_particles) model = model.generate_faux_true_params() simulated_experiment_trial_loop(design_thing, model)
def test_DARCDesign_delay_instantiation(): D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 91)), RB=[100.]).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D, max_trials=3) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_default_instantiation(): D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 91))).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D) assert isinstance(design_thing, BayesianAdaptiveDesignGeneratorDARC)
def test_DARCDesign_delay_initial_design_space(): D = DesignSpaceBuilder(RA=list(100 * np.linspace(0.05, 0.95, 91))).build() design_thing = BayesianAdaptiveDesignGeneratorDARC(D) n_designs = design_thing.all_possible_designs.shape[0] assert n_designs > 10