do_transforms=True, multi_scale=model.multi_scale) test_data = PascalDatasetYOLO( root_dir='../../../Data/VOCdevkit/VOC2007/', class_file='../../../Data/VOCdevkit/voc.names', dataset='test', batch_size=model.batch_size // model.subdivisions, image_size=model.default_image_size, anchors=model.anchors, strides=model.strides, do_transforms=False, multi_scale=False, return_targets=False) model.load_weights('models/yolov2-tiny.conv.13', only_imagenet=True) model = model.to(device) if train: set_random_seed(12345) model.mini_freeze() optimizer = optim.SGD(model.get_trainable_parameters(), lr=model.lr, momentum=model.momentum, weight_decay=model.weight_decay, nesterov=True) scheduler = step_decay_scheduler(optimizer, steps=model.steps, scales=model.scales)
multi_scale=model.multi_scale) test_data = PascalDatasetYOLO( root_dir='../../../Data/VOCdevkit/VOC2007/', class_file='../../../Data/VOCdevkit/voc.names', dataset='test', batch_size=model.batch_size // model.subdivisions, image_size=model.default_image_size, anchors=model.anchors, strides=model.strides, skip_difficult=False, do_transforms=False, multi_scale=False, return_targets=False) model.load_weights('models/yolov3-tiny.conv.11', only_imagenet=True) model = model.to(device) if train: set_random_seed(12345) model.unfreeze() optimizer = optim.SGD(model.get_trainable_parameters(), lr=model.lr, momentum=model.momentum, weight_decay=model.weight_decay, nesterov=True) scheduler = step_decay_scheduler(optimizer, steps=model.steps, scales=model.scales)
strides=model.strides, do_transforms=False, multi_scale=model.multi_scale) test_data = PascalDatasetYOLO(root_dir='../../../Data/SS/', class_file='../../../Data/SS/ss.names', dataset='test', batch_size=model.batch_size // model.subdivisions, image_size=model.default_image_size, anchors=model.anchors, strides=model.strides, do_transforms=False, multi_scale=model.multi_scale) model.load_weights('models/darknet53_448.weights', only_imagenet=True) model = model.to(device) if train: set_random_seed(12345) model.mini_freeze() optimizer = optim.SGD(model.get_trainable_parameters(), lr=model.lr, momentum=model.momentum, weight_decay=model.weight_decay, nesterov=True) scheduler = step_decay_scheduler(optimizer, steps=model.steps, scales=model.scales)