def options_layout(self, inital_args_kwargs): options = html.Div([ html.Div([ Label("Rotation axis"), dcc.Input( value="[1, 0, 0]", id=self.id("gb_rotation_axis"), type="text", className="input", ), ]), html.Br(), html.Div([ Label("Choose Σ"), dcc.Dropdown( id=self.id("gb_sigma_options"), options=[], placeholder="...", ), ]), html.Br(), html.Div([ Label("Choose rotation angle"), dcc.Dropdown( id=self.id("gb_rotation_options"), options=[], placeholder="...", ), ]), html.Br(), html.Div([ Label("Grain width"), dcc.Slider( id=self.id("gb_expand_times"), min=1, max=6, step=1, value=2, marks={ 2: "2", 4: "4", 6: "6" }, ), ]), html.Br(), html.Div([ Label("Distance between grains in Å"), dcc.Input( value="0.0", id=self.id("gb_vacuum_thickness"), type="text", className="input", ), ]), html.Br(), html.Div([ Label("Plane"), dcc.Input( value="None", id=self.id("gb_plane"), type="text", className="input", ), ]), ]) return options
url = "https://api.weatherbit.io/v2.0/current" api_key = "" app = dash.Dash(__name__) server = app.server app.layout = html.Div([ html.Div([ html.H1("Прогноз погоды"), html.Br() ],className='header'), html.Div([ html.H4("Меня интересует погода в:"), dcc.Input(id="city-input", value="Москва", type="text"), html.Button(id='submit-button', n_clicks=0, children='Submit'), html.Br() ], className='user-input'), html.Div([ html.Div([ html.Img(id='weather-icon'), html.Div(id="weather-description") ], className='grid-item'), html.Div([ html.Img(src=app.get_asset_url("thermometer.png")), html.Div(id="temperature") ], className='grid-item'), html.Div([ html.Img(src=app.get_asset_url("humidity.png")),
), html. H3('Weapon stats were pulled from in game menus and use a python based computer vision script to determine the +/- of attachments' ), html. H3('Data is compiled and charted out for you to min/max everything.' ), html.Br(), html.H3('Good Hunting'), html.Br(), html.Hr(), html.Br(), html.H2("WHAT'S YOUR GAMERTAG?"), dcc.Input( id="gamertag", type='text', value='John Wick', style={'textAlign': 'center'}, ), html.Br(), html.Br(), html.H2("NAME YOUR BUILD"), dcc.Input( id="guncode", type='text', value='YeetCannon5000', style={'textAlign': 'center'}, ), html.Br(), html.Br(), html.Div(style={ 'textAlign': 'center',
html.H1("Find TeeTimes", className="display-3"), html.P( "View all available TeeTimes - For Golfbroes", className="lead", ), ], fluid=True, ), ], fluid=True, style={'margin-bottom': '0px'}, className="mb-3"), dbc.Row([ dbc.Col( dcc.Input(id="Username", type='text', placeholder="Username", className="mb-3"), ), dbc.Col([ dcc.Input(id="Password", type='password', placeholder="Password", className="mb-3"), ]), dbc.Col([ dcc.DatePickerSingle(id='date-picker', min_date_allowed=TODAYS_DATE, max_date_allowed=MAX_DATE, initial_visible_month=TODAYS_DATE, date=TODAYS_DATE, display_format='DD/MM/YYYY', className="mb-3"),
def create_app_ui(): # Create the UI of the Webpage here main_layout = html.Div( style={ #'textAlign':'center', 'backgroundColor': '#F9E79F' #'background-image': 'url(https://cdn.pixabay.com/photo/2016/11/29/01/13/background-1866485_1280.jpg)' }, children=[ html.H1('Terrorism Analysis with Insights', id='Main_title', style={ 'textAlign': 'center', 'backgroundColor': '#D1F2EB', }), html.H4('by Prateek Paul', id='Sub_title', style={'textAlign': 'center'}), dcc.Tabs( id="Tabs", value="Map", style={ 'font-weight': 'bold', }, children=[ dcc.Tab( label="Map tool", id="Map tool", value="Map", children=[ dcc.Tabs(id="subtabs", value="WorldMap", children=[ dcc.Tab( label="World Map tool", id="World", value="WorldMap", ), dcc.Tab(label="India Map tool", id="India", value="IndiaMap") ], colors={ "border": "red", "primary": "gold", "background": "cornsilk" }), html.Br(), dcc.Dropdown( id='month', options=month_list, placeholder='Select Month', multi=True, style={ 'width': '600px', 'padding': '10px', 'display': 'inline-block' }, ), #html.Br(), dcc.Dropdown( id='date', placeholder='Select Day', multi=True, style={ 'width': '600px', 'padding': '10px', 'display': 'inline-block' }, ), html.Br(), dcc.Dropdown( id='region-dropdown', options=region_list, placeholder='Select Region', multi=True, style={ 'width': '390px', 'padding': '10px', 'display': 'inline-block' }, ), #html.Br(), dcc.Dropdown( id='country-dropdown', options=[{ 'label': 'All', 'value': 'All' }], placeholder='Select Country', multi=True, style={ 'width': '390px', 'padding': '10px', 'display': 'inline-block' }, ), #html.Br(), dcc.Dropdown( id='state-dropdown', options=[{ 'label': 'All', 'value': 'All' }], placeholder='Select State or Province', multi=True, style={ 'width': '390px', 'padding': '10px', 'display': 'inline-block' }, ), html.Br(), dcc.Dropdown( id='city-dropdown', options=[{ 'label': 'All', 'value': 'All' }], placeholder='Select City', multi=True, style={ 'width': '600px', 'padding': '10px', 'display': 'inline-block' }, ), #html.Br(), dcc.Dropdown( id='attacktype-dropdown', options= attack_type_list, #[{'label': 'All', 'value': 'All'}], placeholder='Select Attack Type', multi=True, style={ 'width': '600px', 'padding': '10px', 'display': 'inline-block' }, ), html.Br(), html.H5('Select the Year', id='year_title'), dcc.RangeSlider( id='year-slider', min=min(year_list), max=max(year_list), value=[min(year_list), max(year_list)], marks=year_dict, step=None), html.Br() ]), dcc.Tab( label="Chart Tool", id="chart tool", value="Chart", children=[ dcc.Tabs( id="subtabs2", value="WorldChart", children=[ dcc.Tab( label="World Chart tool", id="WorldC", value="WorldChart"), #, children = [ dcc.Tab(label="India Chart tool", id="IndiaC", value="IndiaChart") ], colors={ "border": "red", "primary": "gold", "background": "cornsilk" }), html.Br(), html.Br(), dcc.Dropdown( id="Chart_Dropdown", options=chart_dropdown_values, placeholder="Select option", value="region_txt", style={ 'width': '90%', 'padding': '5px', #'display':'inline-block' }, ), #html.Br(), #html.Br(), html.Hr(), dcc.Input( id="search", placeholder="Search Filter", style={ 'width': '60%', 'padding': '10px', #'display':'inline-block' }, ), html.Hr(), html.Br(), dcc.RangeSlider( id='cyear_slider', min=min(year_list), max=max(year_list), value=[min(year_list), max(year_list)], marks=year_dict, step=None), html.Br() ]), ]), html.Div(id="graph-object", children="Graph will be shown here"), html. H6('A Big Thanks to Forsk Coding School for helping and guiding me in this project', id='End_title', style={'textAlign': 'center'}), ]) return main_layout
def cross_over_drop_down(input, parents_prob, cross_over_points): if input is None: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=None), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 0: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=0), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 1: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=1), html.Span('Probability of which parents'), dcc.Input(id='parents-probability', value=parents_prob), html.Span('Number of Points'), dcc.Input(id='cross-over-points-number', value=cross_over_points), ] elif input == 2: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=2), html.Span('Probability of which parents'), dcc.Input(id='parents-probability', value=parents_prob), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 3: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=3), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 4: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=4), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 5: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=5), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 6: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=6), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 7: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=7), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 8: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=8), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points'), dcc.Input(id='cross-over-points-number', value=cross_over_points), ] elif input == 9: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=9), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 10: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=10), html.Span('Probability of which parents', style={'display': 'None'}), dcc.Input(id='parents-probability', value=parents_prob, style={'display': 'None'}), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ] elif input == 11: return [ html.Span('Cross over Algorithms'), dcc.Dropdown(id='cross-over-dropdown', options=cross_over_options, value=11), html.Span('Probability of which parents'), dcc.Input(id='parents-probability', value=parents_prob), html.Span('Number of Points', style={'display': 'None'}), dcc.Input(id='cross-over-points-number', value=cross_over_points, style={'display': 'None'}), ]
) # external_stylesheets = [dbc.themes.BOOTSTRAP] external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets, url_base_pathname='/nanoexplorer/') app.config.suppress_callback_exceptions = True app.layout = html.Div([ html.B("Dataset pattern: "), dcc.Input( id="input-pattern", type="text", debounce=True, style={"min-width": "40%"}, value="/TTTT*/*NanoAODv7*/NANOAODSIM", ), html.Hr(), html.B("Matching datasets:"), html.Div(id='table-datasets-container'), html.Hr(), html.B("Files:"), html.Div(id='table-files-container'), html.Hr(), html.B("Branches:"), html.Div(id='table-branches-container'), html.Div(id="graphs"), ])
dcc.RangeSlider( marks={i: 'Label {}'.format(i) for i in range(-5, 7)}, min=-5, max=6, value=[-3, 4] )''', style=styles.code_container), html.Br(), dcc.Link('More RangeSlider Examples and Reference', href=tools.relpath("/dash-core-components/rangeslider")), html.Hr(), html.H2( dcc.Link('Input', href=tools.relpath('/dash-core-components/input'))), rc.ComponentBlock('''import dash_core_components as dcc dcc.Input( placeholder='Enter a value...', type='text', value='' )''', style=styles.code_container), html.Br(), dcc.Link('More Input Examples and Reference', href=tools.relpath("/dash-core-components/input")), html.Hr(), html.H2( dcc.Link('Textarea', href=tools.relpath('/dash-core-components/textarea'))), rc.ComponentBlock('''import dash_core_components as dcc
'background-color': 'white' }), href='http://127.0.0.1:8080/home', )), html.Div( children='Data Visualization', style={ 'color': 'black', #'border': '2px green solid', 'padding': '20px', 'font-size': 'large', 'textAlign': 'center' }), html.P(html.Label('Start Time:')), dcc.Input(id='start-time-input', type='datetime-local', value=dt.strftime(min_date, '%Y-%m-%dT%H:%M'), className='form-control'), html.P(html.Label('End Time:')), dcc.Input(id='end-time-input', type='datetime-local', min=dt(1995, 8, 5), max=dt(2017, 9, 19), value=dt.strftime(max_date, '%Y-%m-%dT%H:%M'), className='form-control'), html.P(html.Button(id='submit-button', n_clicks=0, children='OK')), html.P(html.Label('Channel selection :')), dcc.Dropdown(id='drop_id', options=[{ 'label': 'Channel 1', 'value': 'ch1' }, {
dcc.Graph(id='hashrate-graph', figure={}), dcc.Graph( id='revratio-graph', figure={}, ), # dcc.Graph( # id='intervals-graph', # figure={}, # ), dcc.Graph( id='conftimes-graph', figure={}, ), html.Div(id='profits', children=[]), html.Div(children=(html.H4("Advanced configuration"))), html.Div(children=(dcc.Input( id='Seed', value=seed, type="number", name="Randomness seed"), html.H6("Randomness seed")), style={'display': 'flex'}), html.Div(children=(dcc.Input(id='blocks', value=params['num_blocks'], type="number", step=100, min=100, max=50000, required=True, persistence=True), html.H6("Number of blocks to simulate")), style={'display': 'flex'}), # html.Div(children=(dcc.Input(id='', value=params[''], type="number", # step=100, min=100, max=50000, required=True, persistence=True),
# -*- coding: utf-8 -*- import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ dcc.Input(id='input-1-state', type='text', value='Montréal'), dcc.Input(id='input-2-state', type='text', value='Canada'), html.Button(id='submit-button-state', n_clicks=0, children='Submit'), html.Div(id='output-state') ]) @app.callback( Output('output-state', 'children'), [Input('submit-button-state', 'n_clicks')], [State('input-1-state', 'value'), State('input-2-state', 'value')]) def update_output(n_clicks, input1, input2): return u''' The Button has been pressed {} times, Input 1 is "{}", and Input 2 is "{}" '''.format(n_clicks, input1, input2)
def Contact(): # Form details formspree_url="https://formspree.io/xqkdkggg" mailing_list="*****@*****.**" nav = Navbar() footer = Footer() name_input = dbc.FormGroup( [ dbc.Row( [ dbc.Col(html.Label("Topic", htmlFor="name-row"),width="auto"), dbc.Col( dcc.Input( type="text", id="name-row", name="name", className="form-control", placeholder="Enter the topic of your message", style={"width":"50%"}, ), width=True ), ], ) ], ) email_input = dbc.FormGroup( [ dbc.Row( [ dbc.Col(html.Label("Email", htmlFor="email-row"),width="auto"), dbc.Col( [dcc.Input( type="email", id="email-row", name="email", className="form-control", placeholder="Enter your email address", style={"width":"50%"} ), dcc.Input( type="hidden", name="_subject", value="Covidanalytics Mailing List", style={"width":"50%"}, ) ], width=True ), ], ) ], ) text_input = dbc.FormGroup( [ dbc.Row( [ dbc.Col(dbc.Label("Text", html_for="message-row"),width="auto"), dbc.Col( [ dcc.Textarea( placeholder="Your message goes here...", className="form-control", id="message-row", name="message", style={"width":"50%","marginLeft":5}, ) ], width=True ), ], ) ], ) submit_button = html.Button("Submit", className="btn btn-primary", formEncType="submit") form = html.Form([name_input, email_input, text_input, submit_button], action=formspree_url, method="POST") body = dbc.Container([ dbc.Row( [ dbc.Col( [ html.P("We are happy to collaborate and help you take our research one step further. " + "Feel free to send us an email using the following form."), html.P( ["You can also reach out to us by sending an email to ", html.A( mailing_list, href="mailto:%s" % mailing_list, ), "." ] ), form ] ) ], ) ], className="page-body", ) layout = html.Div([nav, body, footer],className="site") return layout
def all_layouts(self): # Main plot graph = html.Div( [ dcc.Graph( figure=go.Figure(layout=XRayDiffractionComponent.empty_plot_style), id=self.id("xrd-plot"), config={"displayModeBar": False}, ) ] ) # Radiation source selector rad_source = html.Div([ html.P("Radiation Source"), dcc.Dropdown( id=self.id("rad-source"), options=[ {"label": i, "value": i} for i in self.WAVELENGTHS.keys() ], value="CuKa", placeholder="Select a source...", clearable=False ) ], style={'max-width':'200'} ) # Shape factor input shape_factor = html.Div( [ html.P("Shape Factor, K "), dcc.Input( id=self.id("shape-factor"), placeholder='0.94', type='text', value='0.94' ) ],style={'max-width':'200'} ) # Peak profile selector (Gaussian, Lorentzian, Voigt) peak_profile = html.Div([ html.P("Peak Profile"), dcc.Dropdown( id=self.id("peak-profile"), options=[ {"label":'Gaussian',"value":'G'}, {"label":'Lorentzian',"value":'L'}, {"label":'Voigt',"value":'V'} ], value="G", clearable=False ) ], style={'max-width':'200'} ) # Crystallite size selector (via Scherrer Equation) crystallite_size = html.Div( [ html.P("Scherrer Crystallite Size (nm)"), html.Div([ dcc.Slider( id=self.id("crystallite-slider"), marks={i: '{}'.format(10 ** i) for i in range(-1,3)}, min=-1, max=2, value=0, step=0.01 ), ], style={'max-width':'500'}), html.Div([ ],id=self.id("crystallite-input"),style={"padding-top":"20px"}) ] ) return {"graph": graph, "rad_source": rad_source, "peak_profile": peak_profile, "shape_factor": shape_factor, "crystallite_size": crystallite_size }
erc721 = json.loads(mockup_erc721) df = df.append(erc721, sort=False) df #%% app = dash.Dash() #%% app.layout = html.Div([ html.Div([ dcc.Input(id='input-box', type='text', style=dict( width='60%', height='44px', border='2px solid rgb(147, 162, 173)', margin='0 8px', boxSizing='border-box' )), html.Button('Find', id='find-button', style=dict( width='10%', height='44px', border='2px solid rgb(147, 162, 173)', margin='0 8px', boxSizing='border-box' )) ], style=dict( position='relative', display='flex', justifyContent='center', alignItems='center',
for data in p: var_fit.append(data['var_fitness']) avg_fit.append((data['avg_fitness'])) drop_down_logs.append({'label': file[:-7], 'value': len(logs)}) logs.append({'name': file[:-7], 'var_fit': var_fit, 'avg_fit': avg_fit}) # print(logs) read_logs() app = dash.Dash(name=__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ html.Div([ html.Span('Name', style={'margin': '20px'}), dcc.Input(id='name-input', placeholder='Enter name of experiment', style={'width': '50%'}), ], style={'width': '80%', 'align': 'right', 'display': 'inline-block', 'margin': '10px'}, id='name-div', ), html.Div([ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=0), html.Span('Probability', style={'display': 'None'}), dcc.Input(id='mutation-probability', value='0.5', style={'display': 'None'}), ], style={'width': '80%', 'align': 'right', 'display': 'inline-block', 'margin': '10px'}, id='mutation-div', ), html.Div([
maxk = max(model_keys) return html.Div([ html.H5('Threshold:'), dcc.Slider(id='mdl-slider', min=mink, max=maxk, step=None, value=10, marks={k: str(k) for k in model_keys}) ]) pop_div = html.Div([ html.H5('Population:'), dcc.Input(id="pop-input", type="number", value=20) ]) ren_div = html.Div([ html.H5('Releases Number:'), dcc.Input(id="ren-input", type="number", value=20) ]) res_div = html.Div([ html.H5('Released Fraction:'), dcc.Slider(id='res-slider', min=0, max=1, step=0.15, value=1, marks=get_marks(0, 10 + 1, 1, 10))
def remaining_selection_drop_down(input, param_val): if input is None: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=None), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 0: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=0), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 1: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=1), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 2: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=2), html.Span('Parameter'), dcc.Input(id='remaining_pop_parameter', value=param_val), ] elif input == 3: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=3), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 4: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=4), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 5: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=5), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 6: return [ html.Span('Remaining Selection Algorithms'), dcc.Dropdown(id='remaining-selection-dropdown', options=remaining_selection_options, value=6), html.Span('Parameter', style={'display': 'None'}), dcc.Input(id='remaining_pop_parameter', value='1', style={'display': 'None'}), ] elif input == 7: return [ html.Span('Parents Selection Algorithms'), dcc.Dropdown(id='parents-selection-dropdown', options=parent_selection_options, value=8), ] elif input == 8: return [ html.Span('Parents Selection Algorithms'), dcc.Dropdown(id='parents-selection-dropdown', options=parent_selection_options, value=8), ]
'textAlign': 'center', 'width': '600px', 'padding': '10px', 'display': 'inline-block' }), html.Div(id='fasta_database_hidden_output', style={'display': 'none'}) ]), html.Br(), html.Div([ html.H3("HLA alleles"), "Enter the alleles, seperated by a semi colons", dcc.Input(id='hla_alleles', value='HLA-DRB1*15:01;HLA-DRB1*13:01', style={ 'width': '50%', 'height': '30px', 'lineHeight': '30px', 'borderWidth': '2px', 'textAlign': 'left', 'margin': '10px' }) ]), html.Br(), html.Div([ html.H3("Tissue Name"), "Enter the tissue as defined in Gene expression table: ", dcc.Input(id='tissue_name', value='total PBMC', style={ 'width': '50%', 'height': '30px', 'lineHeight': '30px',
def mutation_drop_down(input, mutation_prob): if input is None: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=None), html.Span('Probability', style={'display': 'None'}), dcc.Input(id='mutation-probability', value=mutation_prob, style={'display': 'None'}), ] elif input == 0: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=0), html.Span('Probability'), dcc.Input(id='mutation-probability', value=mutation_prob), ] elif input == 1: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=1), html.Span('Probability'), dcc.Input(id='mutation-probability', value=mutation_prob), ] elif input == 2: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=2), html.Span('Probability'), dcc.Input(id='mutation-probability', value=mutation_prob), ] elif input == 3: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=3), html.Span('Probability', style={'display': 'None'}), dcc.Input(id='mutation-probability', value=mutation_prob, style={'display': 'None'}), ] elif input == 4: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=4), html.Span('Probability', style={'display': 'None'}), dcc.Input(id='mutation-probability', value=mutation_prob, style={'display': 'None'}), ] elif input == 5: return [ html.Span('Mutation Algorithms'), dcc.Dropdown(id='mutation-dropdown', options=mutation_options, value=5), html.Span('Probability'), dcc.Input(id='mutation-probability', value=mutation_prob), ]
html.Button('Filter', id='buttonsearch', style=dict(width='100%')) ], className='col-4'), html.Div([], className='col-4') ], className='row'), html.Br(), html.Br(), html.Br(), html.Div([ html.Div([ html.P('Max Rows : '), dcc.Input(id='filterrowstable', type='number', value=10, style=dict(width='100%')) ], className='col-3') ], className='row'), html.Center([ html.H2('House Price Data', className='title'), html.Div(id='tablediv', children=generate_table(dfTable)) ]) ]), dcc.Tab(label='Categorical Plots', value='tab-2', children=[ html.Div([
html.Label( [ html.Div(["Scenario"]), dcc.Dropdown( id='scenario', value=dashboard.scenarios_from(product_names[0])[0] ), ] ), html.Label( [ html.Div(["Outliers"]), dcc.Input( id="outlier", placeholder="Enter a value...", type="number", value=0, min=0, max=5, ), ] ), html.Label( [ html.A( html.Button('Download Excel', id='download-button'), id='download-link', ), ] ), ] )
import pandas as pd data = pd.read_csv("data/cities_and_distances.csv") data.reset_index(inplace=True) data1 = data.iloc[:, 2:] data1.index = data1.columns.values dist_mat = data1 app = dash.Dash() app.layout = html.Div(children=[ # an element to take the input html.H1('Travelling Salesman problem using Genetic Algorithm'), html.H3('Best solution so far'), html.Img(src='data:image/png;base64,{}'.format(encoded_image.decode())), html.P('Number of cities'), html.Div(dcc.Input(id='number_of_cities', value=11, type='int')), html.P('Initial Population size'), html.Div(dcc.Input(id='initial_pop_size', value=1000, type='int')), html.P('Elite Population size'), html.Div(dcc.Input(id='nelite', value=500, type='int')), html.P('Percentage of population to mutate'), html.Div(dcc.Input(id='percentage_to_mutate', value=10, type='int')), html.P('Percentage of population to crossover'), html.Div(dcc.Input(id='percentage_to_crossover', value=80, type='int')), html.P('Overall runs'), html.Div(dcc.Input(id='noverall', value=500, type='int')), # an element to handle the output html.Button('Run the genetic algorithm', id='my-button'), html.Div(id='output') ])
def create_app_ui(): # Create the UI of the Webpage here main_layout = html.Div([ html.H1('Terrorism Analysis with Insights', id='Main_title'), dcc.Tabs( id="Tabs", value="Map", children=[ dcc.Tab( label="Map tool", id="Map tool", value="Map", children=[ dcc.Tabs(id="subtabs", value="WorldMap", children=[ dcc.Tab(label="World Map tool", id="World", value="WorldMap"), dcc.Tab(label="India Map tool", id="India", value="IndiaMap") ]), dcc.Dropdown(id='month', options=month_list, placeholder='Select Month', multi=True), dcc.Dropdown(id='date', placeholder='Select Day', multi=True), dcc.Dropdown(id='region-dropdown', options=region_list, placeholder='Select Region', multi=True), dcc.Dropdown(id='country-dropdown', options=[{ 'label': 'All', 'value': 'All' }], placeholder='Select Country', multi=True), dcc.Dropdown(id='state-dropdown', options=[{ 'label': 'All', 'value': 'All' }], placeholder='Select State or Province', multi=True), dcc.Dropdown(id='city-dropdown', options=[{ 'label': 'All', 'value': 'All' }], placeholder='Select City', multi=True), dcc.Dropdown( id='attacktype-dropdown', options= attack_type_list, #[{'label': 'All', 'value': 'All'}], placeholder='Select Attack Type', multi=True), html.H5('Select the Year', id='year_title'), dcc.RangeSlider(id='year-slider', min=min(year_list), max=max(year_list), value=[min(year_list), max(year_list)], marks=year_dict, step=None), html.Br() ]), dcc.Tab(label="Chart Tool", id="chart tool", value="Chart", children=[ dcc.Tabs( id="subtabs2", value="WorldChart", children=[ dcc.Tab( label="World Chart tool", id="WorldC", value="WorldChart", children=[ html.Br(), dcc.Dropdown( id="Chart_Dropdown", options=chart_dropdown_values, placeholder="Select option", value="region_txt"), html.Br(), html.Hr(), dcc.Input( id="search", placeholder="Search Filter"), html.Hr(), html.Br() ]), dcc.Tab(label="India Chart tool", id="IndiaC", value="IndiaChart", children=[]) ]), ]) ]), html.Div(id="graph-object", children="Graph will be shown here") ]) return main_layout
app_name = os.environ['DASH_APP_NAME'] else: app_name = 'dash-text-annotationsplot' layout = html.Div([ html.Div([html.H1("Monthly Temperature Highs and Lows")], style={'textAlign': "center"}), html.Div([html.Div([dcc.Dropdown(id='value-selected', options=[{"label": i, 'value': i} for i in df.columns[1:]], value=['High 2007', 'Low 2000'], multi=True)], style={"display": "block", "margin-left": "auto", "margin-right": "auto", "width": "60%"})], className="row"), dcc.Graph(id="my-graph"), html.Div([html.H6("Text-Annotations", className="row", style={"display": "block", "text-align": "center", "text-decoration": "underline"}), html.Div([dcc.Dropdown(id='x-input', options=[{"label": i, "value": i} for i in month], placeholder="Select month", value='', className="three columns"), dcc.Input(id='y-input', type='number', placeholder="Input temperature", value='', className="three columns"), dcc.Input(id='text-input', type='text', placeholder="Input text", value='', className="two columns"), html.Button(id='submit-button', children="Submit", className="two columns"), html.Button(id='remove-button', children="Remove", className="two columns"), ], className="row", style={"display": "block", "margin-left": "auto", "margin-right": "auto", "width": "100%"})]) ], className="container") @app.callback( Output("my-graph", "figure"), [Input("value-selected", "value"), Input("remove-button", 'n_clicks'), Input('submit-button', 'n_clicks')], [State('x-input', 'value'), State('y-input', 'value'), State('text-input', 'value')]) def update_graph(selected, remove, n_clicks, x_value, y_value, text): dropdown = {"High 2014": "High Temperature in 2014", "Low 2014": "Low Temperature in 2014", "High 2007": "High Temperature in 2007", "Low 2007": "Low Temperature in 2007",
from dash.dependencies import Input, Output, State import pandas_datareader.data as web # requires v0.6.0 or later from datetime import datetime import pandas as pd from dotenv import load_dotenv load_dotenv() import os TIINGO_API_KEY = os.getenv("TIINGO_API_KEY") app = dash.Dash() app.layout = html.Div([ html.H1('Stock Ticker Dashboard'), html.H3('Enter a stock symbol:'), dcc.Input(id='my_ticker_symbol', value='TSLA'), dcc.Graph(id='my_graph', figure={'data': [{ 'x': [1, 2], 'y': [3.4] }]}) ]) @app.callback(Output('my_graph', 'figure'), [Input('my_ticker_symbol', 'value')]) def update_graph(stock_ticker): start = datetime(2017, 1, 1) end = datetime(2020, 10, 10) df = web.get_data_tiingo(stock_ticker, start, end, api_key=TIINGO_API_KEY) df.index = df.index.get_level_values('date') fig = {
html.Div([ html.Div(id='container_col_select', children=dcc.Dropdown(id='col_select', options=[{ 'label': c.replace('_', ' ').title(), 'value': c} for c in sample_df.columns]), style={'display': 'inline-block', 'width': '30%', 'margin-left': '7%'}), # DataFrame filter containers html.Div([ html.Div(children=dcc.RangeSlider(id='num_filter', updatemode='drag')), html.Div(children=html.Div(id='rng_slider_vals'), ), ], id='container_num_filter', ), html.Div(id='container_str_filter', children=dcc.Input(id='str_filter')), html.Div(id='container_bool_filter', children=dcc.Dropdown(id='bool_filter', options=[{'label': str(tf), 'value': tf} for tf in [True, False]])), html.Div(id='container_cat_filter', children=dcc.Dropdown(id='cat_filter', multi=True, options=[{'label': day, 'value': day} for day in sample_df['category'].unique()])), html.Div([ dcc.DatePickerRange(id='date_filter', initial_visible_month= pd.datetime(2019, 5, 10)), ], id='container_date_filter'), ]), DataTable(id='table',
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.graph_objs as go import numpy as np import pandas as pd df = pd.read_csv('OldFaithful.csv') colors = {'background': '#111111', 'text': '#7FDBFF'} app = dash.Dash() app.layout = html.Div([ dcc.Input(id='my-id', value='Initial Text', type='text'), html.Div(id='my-div') ]) @app.callback(Output(component_id='my-div', component_property='children'), [Input(component_id='my-id', component_property='value')]) def update_output_div(input_value): return "You entered : {}".format(input_value) if __name__ == '__main__': app.run_server()
), ), dbc.NavbarToggler(id="navbar-toggler"), ], color="dark", dark=True ), html.Button( id='button', style={"width": "10%", "display": "inline-block"}, children='Update', n_clicks=0, ), dcc.Input( id="input", type='text', style={"width": "30%"}, value='', ), html.Button( id="input-button", style={"width": "10%", "left": 0, "display": "inline-block"}, children="Import", n_clicks=0, ), html.Div( id="data", style={"display": "none"}, ), dcc.Dropdown( id="dropmenu",
) app.title = 'Dashboard mpg' app.layout = html.Div([ html.H1('Cars Data Analytics'), html.H3('1870-1983' ), dcc.Tabs(id="tabs", value='tab-1', children=[ dcc.Tab(label = 'Cars 1970 - 1982 Data', value = 'tab-1', children = [ html.Div([ html.Div([ html.P('Find Car By: '), dcc.Input( id = 'filternametable', type = 'text', value = '', style = dict(width='100%') ) ], className = 'col-4'), html.Div([ html.P('Filter Model Year : '), dcc.Dropdown( id='filterModelYear', options=[i for i in [{ 'label': 'All year', 'value': '' }, { 'label': '1970', 'value': '70' }, { 'label': '1971', 'value': '71' }, { 'label': '1972', 'value': '72' }, { 'label': '1973', 'value': '73' }, { 'label': '1974', 'value': '74' }, { 'label': '1975', 'value': '75' }, { 'label': '1976', 'value': '76' },
def render_content(tab): if tab == 'tab-1': return html.Div([ html.P('Enter UserID[1 - 1002]'), dcc.Input(id='input-box', value='1', type='text', style={'borderRadius': '5px'}), #plotted graphs dcc.Graph(id='agg_det'), html.Div(id='inter', children=[ dcc.Graph(id='pers_det'), dcc.Graph(id='performance') ], style={'columnCount': 2}), #recommendations html.H5('Recommendations', style={'color': '#CA0009', 'marginLeft': '2%'}), html.Div([ html.H6('Products', style=styles['sub-menu']), html.Div(id='prods', style=styles['sub-sub']), html.H6('Tips', style=styles['sub-menu']), html.Div(id='recoms', style=styles['sub-sub']) ]) ], style=styles['main']) elif tab == 'tab-2': return html.Div([ html.Div([ dcc.Markdown(''' Follow Procedure Below to check your carbon_footprint And possible improvements you can make *Click on the Download File Button *Fill in your details *Consumption column is in count of units columns *Quality_of_Life_Importance__1_10 column is range of 100% *For Type of Energy Selection: *Input 1 for Yes *Input 0 for No *Drag and Drop or Select File to Upload File ***Please note, your data will be added to database to improve results '''), html.A( html.Button('Download File'), id='download', href="/dash/urlToDownload" ), ], style={'margin': '0px 0px 0px 30px'}), dcc.Upload( id='upload-data', children=html.Div([ 'Drag and Drop or ', html.A('Select File') ]), style={ 'width': '95%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '0px 0px 0px 30px' }, ), html.Div(id='show-data') ])