예제 #1
0
def CartesianToEquatorial(pos, observer=[0,0,0]):
    """
    Convert Cartesian position coordinates to equatorial right ascension
    and declination, using the specified observer location.

    .. note::
        RA and DEC will be returned in degrees, with RA in the range [0,360]
        and DEC in the range [-90, 90].

    Parameters
    ----------
    pos : array_like
        a N x 3 array holding the Cartesian position coordinates
    observer : array_like
        a length 3 array holding the observer location

    Returns
    -------
    ra, dec : array_like
        the right ascension and declination coordinates, in degrees. RA
        will be in the range [0,360] and DEC in the range [-90, 90]
    """
    # recenter based on observer
    pos = pos - observer

    s = da.hypot(pos[:,0], pos[:,1])
    lon = da.arctan2(pos[:,1], pos[:,0])
    lat = da.arctan2(pos[:,2], s)

    # convert to degrees
    lon = da.rad2deg(lon)
    lat = da.rad2deg(lat)

    # wrap lon to [0,360]
    lon = da.mod(lon-360., 360.)

    return lon, lat
예제 #2
0
def get_alt_az(utc_time, lon, lat):
    """Return sun altitude and azimuth from *utc_time*, *lon*, and *lat*.
    lon,lat in degrees
    What is the unit of the returned angles and heights!? FIXME!
    """
    lon = da.deg2rad(lon)
    lat = da.deg2rad(lat)

    ra_, dec = sun_ra_dec(utc_time)
    h__ = _local_hour_angle(utc_time, lon, ra_)
    return (da.arcsin(
        da.sin(lat) * np.sin(dec) + da.cos(lat) * np.cos(dec) * np.cos(h__)),
            da.arctan2(
                -np.sin(h__),
                (da.cos(lat) * np.tan(dec) - da.sin(lat) * np.cos(h__))))
예제 #3
0
def test_arithmetic():
    x = np.arange(5).astype('f4') + 2
    y = np.arange(5).astype('i8') + 2
    z = np.arange(5).astype('i4') + 2
    a = da.from_array(x, chunks=(2,))
    b = da.from_array(y, chunks=(2,))
    c = da.from_array(z, chunks=(2,))
    assert eq(a + b, x + y)
    assert eq(a * b, x * y)
    assert eq(a - b, x - y)
    assert eq(a / b, x / y)
    assert eq(b & b, y & y)
    assert eq(b | b, y | y)
    assert eq(b ^ b, y ^ y)
    assert eq(a // b, x // y)
    assert eq(a ** b, x ** y)
    assert eq(a % b, x % y)
    assert eq(a > b, x > y)
    assert eq(a < b, x < y)
    assert eq(a >= b, x >= y)
    assert eq(a <= b, x <= y)
    assert eq(a == b, x == y)
    assert eq(a != b, x != y)

    assert eq(a + 2, x + 2)
    assert eq(a * 2, x * 2)
    assert eq(a - 2, x - 2)
    assert eq(a / 2, x / 2)
    assert eq(b & True, y & True)
    assert eq(b | True, y | True)
    assert eq(b ^ True, y ^ True)
    assert eq(a // 2, x // 2)
    assert eq(a ** 2, x ** 2)
    assert eq(a % 2, x % 2)
    assert eq(a > 2, x > 2)
    assert eq(a < 2, x < 2)
    assert eq(a >= 2, x >= 2)
    assert eq(a <= 2, x <= 2)
    assert eq(a == 2, x == 2)
    assert eq(a != 2, x != 2)

    assert eq(2 + b, 2 + y)
    assert eq(2 * b, 2 * y)
    assert eq(2 - b, 2 - y)
    assert eq(2 / b, 2 / y)
    assert eq(True & b, True & y)
    assert eq(True | b, True | y)
    assert eq(True ^ b, True ^ y)
    assert eq(2 // b, 2 // y)
    assert eq(2 ** b, 2 ** y)
    assert eq(2 % b, 2 % y)
    assert eq(2 > b, 2 > y)
    assert eq(2 < b, 2 < y)
    assert eq(2 >= b, 2 >= y)
    assert eq(2 <= b, 2 <= y)
    assert eq(2 == b, 2 == y)
    assert eq(2 != b, 2 != y)

    assert eq(-a, -x)
    assert eq(abs(a), abs(x))
    assert eq(~(a == b), ~(x == y))
    assert eq(~(a == b), ~(x == y))

    assert eq(da.logaddexp(a, b), np.logaddexp(x, y))
    assert eq(da.logaddexp2(a, b), np.logaddexp2(x, y))
    assert eq(da.exp(b), np.exp(y))
    assert eq(da.log(a), np.log(x))
    assert eq(da.log10(a), np.log10(x))
    assert eq(da.log1p(a), np.log1p(x))
    assert eq(da.expm1(b), np.expm1(y))
    assert eq(da.sqrt(a), np.sqrt(x))
    assert eq(da.square(a), np.square(x))

    assert eq(da.sin(a), np.sin(x))
    assert eq(da.cos(b), np.cos(y))
    assert eq(da.tan(a), np.tan(x))
    assert eq(da.arcsin(b/10), np.arcsin(y/10))
    assert eq(da.arccos(b/10), np.arccos(y/10))
    assert eq(da.arctan(b/10), np.arctan(y/10))
    assert eq(da.arctan2(b*10, a), np.arctan2(y*10, x))
    assert eq(da.hypot(b, a), np.hypot(y, x))
    assert eq(da.sinh(a), np.sinh(x))
    assert eq(da.cosh(b), np.cosh(y))
    assert eq(da.tanh(a), np.tanh(x))
    assert eq(da.arcsinh(b*10), np.arcsinh(y*10))
    assert eq(da.arccosh(b*10), np.arccosh(y*10))
    assert eq(da.arctanh(b/10), np.arctanh(y/10))
    assert eq(da.deg2rad(a), np.deg2rad(x))
    assert eq(da.rad2deg(a), np.rad2deg(x))

    assert eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4))
    assert eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4))
    assert eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4))
    assert eq(da.logical_not(a < 1), np.logical_not(x < 1))
    assert eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a))
    assert eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a))
    assert eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a))
    assert eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a))

    assert eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y))
    assert eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y))
    assert eq(da.isfinite(a), np.isfinite(x))
    assert eq(da.isinf(a), np.isinf(x))
    assert eq(da.isnan(a), np.isnan(x))
    assert eq(da.signbit(a - 3), np.signbit(x - 3))
    assert eq(da.copysign(a - 3, b), np.copysign(x - 3, y))
    assert eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y))
    assert eq(da.ldexp(c, c), np.ldexp(z, z))
    assert eq(da.fmod(a * 12, b), np.fmod(x * 12, y))
    assert eq(da.floor(a * 0.5), np.floor(x * 0.5))
    assert eq(da.ceil(a), np.ceil(x))
    assert eq(da.trunc(a / 2), np.trunc(x / 2))

    assert eq(da.degrees(b), np.degrees(y))
    assert eq(da.radians(a), np.radians(x))

    assert eq(da.rint(a + 0.3), np.rint(x + 0.3))
    assert eq(da.fix(a - 2.5), np.fix(x - 2.5))

    assert eq(da.angle(a + 1j), np.angle(x + 1j))
    assert eq(da.real(a + 1j), np.real(x + 1j))
    assert eq((a + 1j).real, np.real(x + 1j))
    assert eq(da.imag(a + 1j), np.imag(x + 1j))
    assert eq((a + 1j).imag, np.imag(x + 1j))
    assert eq(da.conj(a + 1j * b), np.conj(x + 1j * y))
    assert eq((a + 1j * b).conj(), (x + 1j * y).conj())

    assert eq(da.clip(b, 1, 4), np.clip(y, 1, 4))
    assert eq(da.fabs(b), np.fabs(y))
    assert eq(da.sign(b - 2), np.sign(y - 2))

    l1, l2 = da.frexp(a)
    r1, r2 = np.frexp(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    l1, l2 = da.modf(a)
    r1, r2 = np.modf(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    assert eq(da.around(a, -1), np.around(x, -1))
예제 #4
0
def test_arithmetic():
    x = np.arange(5).astype('f4') + 2
    y = np.arange(5).astype('i8') + 2
    z = np.arange(5).astype('i4') + 2
    a = da.from_array(x, chunks=(2, ))
    b = da.from_array(y, chunks=(2, ))
    c = da.from_array(z, chunks=(2, ))
    assert eq(a + b, x + y)
    assert eq(a * b, x * y)
    assert eq(a - b, x - y)
    assert eq(a / b, x / y)
    assert eq(b & b, y & y)
    assert eq(b | b, y | y)
    assert eq(b ^ b, y ^ y)
    assert eq(a // b, x // y)
    assert eq(a**b, x**y)
    assert eq(a % b, x % y)
    assert eq(a > b, x > y)
    assert eq(a < b, x < y)
    assert eq(a >= b, x >= y)
    assert eq(a <= b, x <= y)
    assert eq(a == b, x == y)
    assert eq(a != b, x != y)

    assert eq(a + 2, x + 2)
    assert eq(a * 2, x * 2)
    assert eq(a - 2, x - 2)
    assert eq(a / 2, x / 2)
    assert eq(b & True, y & True)
    assert eq(b | True, y | True)
    assert eq(b ^ True, y ^ True)
    assert eq(a // 2, x // 2)
    assert eq(a**2, x**2)
    assert eq(a % 2, x % 2)
    assert eq(a > 2, x > 2)
    assert eq(a < 2, x < 2)
    assert eq(a >= 2, x >= 2)
    assert eq(a <= 2, x <= 2)
    assert eq(a == 2, x == 2)
    assert eq(a != 2, x != 2)

    assert eq(2 + b, 2 + y)
    assert eq(2 * b, 2 * y)
    assert eq(2 - b, 2 - y)
    assert eq(2 / b, 2 / y)
    assert eq(True & b, True & y)
    assert eq(True | b, True | y)
    assert eq(True ^ b, True ^ y)
    assert eq(2 // b, 2 // y)
    assert eq(2**b, 2**y)
    assert eq(2 % b, 2 % y)
    assert eq(2 > b, 2 > y)
    assert eq(2 < b, 2 < y)
    assert eq(2 >= b, 2 >= y)
    assert eq(2 <= b, 2 <= y)
    assert eq(2 == b, 2 == y)
    assert eq(2 != b, 2 != y)

    assert eq(-a, -x)
    assert eq(abs(a), abs(x))
    assert eq(~(a == b), ~(x == y))
    assert eq(~(a == b), ~(x == y))

    assert eq(da.logaddexp(a, b), np.logaddexp(x, y))
    assert eq(da.logaddexp2(a, b), np.logaddexp2(x, y))
    assert eq(da.exp(b), np.exp(y))
    assert eq(da.log(a), np.log(x))
    assert eq(da.log10(a), np.log10(x))
    assert eq(da.log1p(a), np.log1p(x))
    assert eq(da.expm1(b), np.expm1(y))
    assert eq(da.sqrt(a), np.sqrt(x))
    assert eq(da.square(a), np.square(x))

    assert eq(da.sin(a), np.sin(x))
    assert eq(da.cos(b), np.cos(y))
    assert eq(da.tan(a), np.tan(x))
    assert eq(da.arcsin(b / 10), np.arcsin(y / 10))
    assert eq(da.arccos(b / 10), np.arccos(y / 10))
    assert eq(da.arctan(b / 10), np.arctan(y / 10))
    assert eq(da.arctan2(b * 10, a), np.arctan2(y * 10, x))
    assert eq(da.hypot(b, a), np.hypot(y, x))
    assert eq(da.sinh(a), np.sinh(x))
    assert eq(da.cosh(b), np.cosh(y))
    assert eq(da.tanh(a), np.tanh(x))
    assert eq(da.arcsinh(b * 10), np.arcsinh(y * 10))
    assert eq(da.arccosh(b * 10), np.arccosh(y * 10))
    assert eq(da.arctanh(b / 10), np.arctanh(y / 10))
    assert eq(da.deg2rad(a), np.deg2rad(x))
    assert eq(da.rad2deg(a), np.rad2deg(x))

    assert eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4))
    assert eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4))
    assert eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4))
    assert eq(da.logical_not(a < 1), np.logical_not(x < 1))
    assert eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a))
    assert eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a))
    assert eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a))
    assert eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a))

    assert eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y))
    assert eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y))
    assert eq(da.isfinite(a), np.isfinite(x))
    assert eq(da.isinf(a), np.isinf(x))
    assert eq(da.isnan(a), np.isnan(x))
    assert eq(da.signbit(a - 3), np.signbit(x - 3))
    assert eq(da.copysign(a - 3, b), np.copysign(x - 3, y))
    assert eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y))
    assert eq(da.ldexp(c, c), np.ldexp(z, z))
    assert eq(da.fmod(a * 12, b), np.fmod(x * 12, y))
    assert eq(da.floor(a * 0.5), np.floor(x * 0.5))
    assert eq(da.ceil(a), np.ceil(x))
    assert eq(da.trunc(a / 2), np.trunc(x / 2))

    assert eq(da.degrees(b), np.degrees(y))
    assert eq(da.radians(a), np.radians(x))

    assert eq(da.rint(a + 0.3), np.rint(x + 0.3))
    assert eq(da.fix(a - 2.5), np.fix(x - 2.5))

    assert eq(da.angle(a + 1j), np.angle(x + 1j))
    assert eq(da.real(a + 1j), np.real(x + 1j))
    assert eq((a + 1j).real, np.real(x + 1j))
    assert eq(da.imag(a + 1j), np.imag(x + 1j))
    assert eq((a + 1j).imag, np.imag(x + 1j))
    assert eq(da.conj(a + 1j * b), np.conj(x + 1j * y))
    assert eq((a + 1j * b).conj(), (x + 1j * y).conj())

    assert eq(da.clip(b, 1, 4), np.clip(y, 1, 4))
    assert eq(da.fabs(b), np.fabs(y))
    assert eq(da.sign(b - 2), np.sign(y - 2))

    l1, l2 = da.frexp(a)
    r1, r2 = np.frexp(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    l1, l2 = da.modf(a)
    r1, r2 = np.modf(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    assert eq(da.around(a, -1), np.around(x, -1))
예제 #5
0
USEcalibr0V_i = []
USEcalibr0V_time = [['2018-04-17T17:28', '2018-04-17T17:38']]  # [['2018-04-17T19:10', '2018-04-17T19:20']]
nAveragePrefer = 128  # 1200

# Filter
min_P = 0.5

# Displey
vecScale = 1
DISP_TimeZoom = [['2018-04-17T20:00', '2018-04-18T00:00']]

maxGsumMinus1 = 0.3  # 0.1
TimeShiftedFromUTC_s = 0

# Angles in radians:
fPitch = lambda Gxyz: -da.arctan2(Gxyz[0, :], da.sqrt(da.sum(da.square(Gxyz[1:, :]), 0)))
fRoll = lambda Gxyz: da.arctan2(Gxyz[1, :], Gxyz[2,
                                            :])  # da.arctan2(Gxyz[1,:], da.sqrt(da.sum(da.square(Gxyz[(0,2),:]), 0)))  #=da.arctan2(Gxyz[1,:], da.sqrt(da.square(Gxyz[0,:])+da.square(Gxyz[2,:])) )
fInclination = lambda Gxyz: da.arctan2(da.sqrt(da.sum(da.square(Gxyz[:-1, :]), 0)), Gxyz[2, :])
fHeading = lambda H, p, r: da.arctan2(H[2, :] * da.sin(r) - H[1, :] * da.cos(r),
                                      H[0, :] * da.cos(p) + (H[1, :] * da.sin(r) + H[2, :] * da.cos(r)) * da.sin(p))

fG = lambda Axyz, Ag, Cg: da.dot(Ag.T, (Axyz - Cg[0, :]).T)
fGi = lambda Ax, Ay, Az, Ag, Cg, i: da.dot(Ag.T, (da.column_stack((Ax, Ay, Az))[slice(*i)] - Cg[0, :]).T)

fbinningClip = lambda x, bin2_iStEn, bin1_nAverage: da.mean(da.reshape(x[slice(*bin2_iStEn)], (-1, bin1_nAverage)), 1)
fbinning = lambda x, bin1_nAverage: da.mean(da.reshape(x, (-1, bin1_nAverage)), 1)
repeat3shift1 = lambda A2: [A2[t:(len(A2) - 2 + t)] for t in range(3)]
median3cols = lambda a, b, c: da.where(a < b, da.where(c < a, a, da.where(b < c, b, c)),
                                       da.where(a < c, a, da.where(c < b, b, c)))
median3 = lambda x: da.hstack((np.NaN, median3cols(*repeat3shift1(x)), np.NaN))
예제 #6
0
def CartesianToEquatorial(pos, observer=[0,0,0], frame='icrs'):
    """
    Convert Cartesian position coordinates to equatorial right ascension
    and declination, using the specified observer location.

    .. note::
        RA and DEC will be returned in degrees, with RA in the range [0,360]
        and DEC in the range [-90, 90].

    Parameters
    ----------
    pos : array_like
        a N x 3 array holding the Cartesian position coordinates
    observer : array_like
        a length 3 array holding the observer location
    frame : string
        A string, 'icrs' or 'galactic'. The frame of the input position.
        Use 'icrs' if the cartesian position is already in Equatorial.

    Returns
    -------
    ra, dec : array_like
        the right ascension and declination coordinates, in degrees. RA
        will be in the range [0,360] and DEC in the range [-90, 90]
    """

    # split x, y, z to signify that we do not need to have pos
    # as a full chunk in the last dimension.
    # this is useful when we use apply_gufunc.

    x, y, z = [pos[..., i] - observer[i] for i in range(3)]

    if frame == 'icrs':
        # FIXME: Convert these to a gufunc that uses astropy?
        # might be a step backward.

        # from equatorial to equatorial
        s = da.hypot(x, y)
        lon = da.arctan2(y, x)
        lat = da.arctan2(z, s)

        # convert to degrees
        lon = da.rad2deg(lon)
        lat = da.rad2deg(lat)
        # wrap lon to [0,360]
        lon = da.mod(lon-360., 360.)
        ra, dec = lon, lat
    else:
        from astropy.coordinates import SkyCoord

        def cart_to_eq(x, y, z):
            try:
                sc = SkyCoord(x, y, z, representation_type='cartesian', frame=frame)
                scg = sc.transform_to(frame='icrs')
                scg.representation_type = 'unitspherical'
            except:
                sc = SkyCoord(x, y, z, representation='cartesian', frame=frame)
                scg = sc.transform_to(frame='icrs')
                scg.representation = 'unitspherical'

            ra, dec = scg.ra.value, scg.dec.value

            return ra, dec

        dtype = pos.dtype
        ra, dec = da.apply_gufunc(cart_to_eq, '(),(),()->(),()', x, y, z, output_dtypes=[dtype, dtype])

    return da.stack((ra, dec), axis=0)
예제 #7
0
from distributed import Client, progress
import dask.array as da
dask_client = Client(
    scheduler_file="/global/cscratch1/sd/rkube/scheduler.json")

with np.load("../dask_fft_data_s0000.npz") as df:
    num_channels, num_fft = df["fft_data"].shape
    print(num_channels, num_fft)

    fft_data = da.from_array(df["fft_data"], chunks=(1, num_fft))
    dask_client.persist(fft_data)

# Calculate the crosspower using the array interface
res1 = (fft_data[:2, :] * fft_data[-2:, :].conj()).mean(axis=1)
print("type res1 = ", type(res1))
res2 = da.arctan2(res1.real, res1.imag).real
print("type res2 = ", type(res2))
print("result res2 = ", res2.compute())


# Calculate the crosspower using the distributed interface
def cross_phase(ft_data, ch1, ch2):

    _tmp1 = (ft_data[ch1, :] * ft_data[ch2, :].conj()).mean().compute()
    print("** crosspower: type(tmp1) =", type(_tmp1))
    _tmp2 = np.arctan2(_tmp1.real, _tmp1.imag).real
    #_tmp2 = _tmp1.real + _tmp1.imag

    return (_tmp2)

예제 #8
0
def sinfit(array, periods, dim=None, coord=None, unit='s'):
    """
	Least squares sinusoidal fit.
	Fit sinusoidal functions ``y = A[p] * sin(2 * pi * ax * f[1] + phi[1])``

	Parameters
	----------
	array : xarray.DataArray
		Data to be fitted
	periods: float or list of float
		The periods of the sinusoidal functions to be fitted
	dim : str, optional
		The dimension along which the data will be fitted. If not precised,
		the first dimension will be used
	unit : {'D', 'h', 'm', 's', 'ms', 'us', 'ns'}, optional
		If the fit uses a datetime dimension, the unit of the period may be
		specified here.

	Returns
	-------
	modes : Dataset
		A Dataset with the amplitude and the phase for each periods
	"""
    if dim is None:
        dim = array.dims[0]
    if _utils.is_scalar(periods):
        periods = [
            periods,
        ]
    n = 2 * len(periods) + 1
    # Sort frequencies in ascending order
    periods.sort(reverse=True)
    # Re-order the array to place the fitting dimension as the first dimension
    # + stack the other dimensions
    array_stacked = _order_and_stack(array, dim)
    dim_chunk = array.chunks[array.get_axis_num(dim)][0]
    # Check if the dimension is associated with a numpy.datetime
    # and normalize to use periods and time in seconds
    if coord is None:
        coord = array[dim]
    if _utils.is_datetime(coord):
        # Use the 1e-9 to scale nanoseconds to seconds (by default, xarray use
        # datetime in nanoseconds
        t = coord.data.astype('f8') * 1e-9
        freqs = 1. / pd.to_timedelta(periods, unit=unit).total_seconds()
    else:
        t = coord.data
        freqs = 1. / periods
    # Build coefficient matrix for the fit using the exponential form
    x = da.vstack([da.cos(2 * np.pi * f * t) for f in reversed(freqs)] + [
        da.ones(len(t), chunks=dim_chunk),
    ] + [da.sin(2 * np.pi * f * t) for f in freqs]).T
    x = x.rechunk((dim_chunk, n))
    # Solve the least-square system
    c, _, _, _ = da.linalg.lstsq(x, array_stacked.data)
    # Get cosine (a) and sine (b) ampitudes
    b = c[0:n // 2, ][::-1]
    a = c[n // 2 + 1:, ]
    # Compute amplitude and phase
    amplitude = da.sqrt(a**2 + b**2)
    phase = da.arctan2(b, a) * 180. / np.pi
    # Store the results
    new_dims = ('periods', ) + array_stacked.dims[1:]
    new_coords = {
        co: array_stacked.coords[co]
        for co in array_stacked.coords if co != dim
    }
    var_dict = {
        'amplitude': (new_dims, amplitude),
        'phase': (new_dims, phase),
        'offset': (array_stacked.dims[1:], c[n // 2, ])
    }
    ds = xr.Dataset(var_dict, coords=new_coords)
    ds = ds.assign_coords(periods=periods)
    ds['periods'].attrs['units'] = unit
    # Unstack the data
    modes = _unstack(ds)
    return modes
예제 #9
0
        assert mapper is not None
        self.fullname, self.unit, self.mapper, self.column, self.extras = fullname, unit, mapper, column, extras
        self.conjugate = conjugate
        self.axis = axis


_identity = lambda x: x

# this dict maps short axis names into full DataMapper objects
data_mappers = OrderedDict(
    _=DataMapper("", "", _identity),
    amp=DataMapper("Amplitude", "", abs),
    logamp=DataMapper("Log-amplitude", "", lambda x: da.log10(abs(x))),
    phase=DataMapper(
        "Phase", "deg",
        lambda x: da.arctan2(da.imag(x), da.real(x)) * 180 / math.pi),
    real=DataMapper("Real", "", da.real),
    imag=DataMapper("Imag", "", da.imag),
    TIME=DataMapper("Time", "s", axis=0, column="TIME", mapper=_identity),
    ROW=DataMapper("Row number",
                   "",
                   column=False,
                   axis=0,
                   extras=["rows"],
                   mapper=lambda x, rows: rows),
    BASELINE=DataMapper("Baseline",
                        "",
                        column=False,
                        axis=0,
                        extras=["baselines"],
                        mapper=lambda x, baselines: baselines),
예제 #10
0
파일: transform.py 프로젝트: bccp/nbodykit
def CartesianToEquatorial(pos, observer=[0,0,0], frame='icrs'):
    """
    Convert Cartesian position coordinates to equatorial right ascension
    and declination, using the specified observer location.

    .. note::
        RA and DEC will be returned in degrees, with RA in the range [0,360]
        and DEC in the range [-90, 90].

    Parameters
    ----------
    pos : array_like
        a N x 3 array holding the Cartesian position coordinates
    observer : array_like
        a length 3 array holding the observer location
    frame : string
        A string, 'icrs' or 'galactic'. The frame of the input position.
        Use 'icrs' if the cartesian position is already in Equatorial.

    Returns
    -------
    ra, dec : array_like
        the right ascension and declination coordinates, in degrees. RA
        will be in the range [0,360] and DEC in the range [-90, 90]
    """

    # split x, y, z to signify that we do not need to have pos
    # as a full chunk in the last dimension.
    # this is useful when we use apply_gufunc.

    x, y, z = [pos[..., i] - observer[i] for i in range(3)]

    if frame == 'icrs':
        # FIXME: Convert these to a gufunc that uses astropy?
        # might be a step backward.

        # from equatorial to equatorial
        s = da.hypot(x, y)
        lon = da.arctan2(y, x)
        lat = da.arctan2(z, s)

        # convert to degrees
        lon = da.rad2deg(lon)
        lat = da.rad2deg(lat)
        # wrap lon to [0,360]
        lon = da.mod(lon-360., 360.)
        ra, dec = lon, lat
    else:
        from astropy.coordinates import SkyCoord

        def cart_to_eq(x, y, z):
            try:
                sc = SkyCoord(x, y, z, representation_type='cartesian', frame=frame)
                scg = sc.transform_to(frame='icrs')
                scg.representation_type = 'unitspherical'
            except:
                sc = SkyCoord(x, y, z, representation='cartesian', frame=frame)
                scg = sc.transform_to(frame='icrs')
                scg.representation = 'unitspherical'

            ra, dec = scg.ra.value, scg.dec.value

            return ra, dec

        dtype = pos.dtype
        ra, dec = da.apply_gufunc(cart_to_eq, '(),(),()->(),()', x, y, z, output_dtypes=[dtype, dtype])

    return da.stack((ra, dec), axis=0)