예제 #1
0
    def parse_batch_train(self, batch_x, batch_u):
        input_x = batch_x['img'][0]
        label_x = batch_x['label']
        label_x = create_onehot(label_x, self.num_classes)
        input_u = batch_u['img']

        input_x = input_x.to(self.device)
        label_x = label_x.to(self.device)
        input_u = [input_ui.to(self.device) for input_ui in input_u]

        return input_x, label_x, input_u
예제 #2
0
    def parse_batch_train(self, batch):
        input = batch['img']
        input2 = batch['img2']
        label = batch['label']
        domain = batch['domain']

        label = create_onehot(label, self.num_classes)

        input = input.to(self.device)
        input2 = input2.to(self.device)
        label = label.to(self.device)

        return input, input2, label, domain
예제 #3
0
    def parse_batch_train(self, batch_x, batch_u):
        input_x = batch_x['img']
        input_x2 = batch_x['img2']
        label_x = batch_x['label']
        domain_x = batch_x['domain']
        input_u = batch_u['img']
        input_u2 = batch_u['img2']

        label_x = create_onehot(label_x, self.num_classes)

        input_x = input_x.to(self.device)
        input_x2 = input_x2.to(self.device)
        label_x = label_x.to(self.device)
        input_u = input_u.to(self.device)
        input_u2 = input_u2.to(self.device)

        return input_x, input_x2, label_x, domain_x, input_u, input_u2
예제 #4
0
    def parse_batch_train(self, batch_x, batch_u):
        input_x = batch_x['img']
        input_x2 = batch_x['img2']
        label_x = batch_x['label']
        domain_x = batch_x['domain']
        input_u = batch_u['img']
        input_u2 = batch_u['img2']
        if self.is_regressive:
            label_x = torch.cat([torch.unsqueeze(x, 1) for x in label_x],
                                1)  #Stack list of tensors
        else:
            label_x = create_onehot(label_x, self.num_classes)

        input_x = input_x.to(self.device)
        input_x2 = input_x2.to(self.device)
        label_x = label_x.to(self.device)
        input_u = input_u.to(self.device)
        input_u2 = input_u2.to(self.device)

        return input_x, input_x2, label_x, domain_x, input_u, input_u2
예제 #5
0
    def forward_backward(self, batch_x, batch_u):
        # Load data
        parsed_data = self.parse_batch_train(batch_x, batch_u)
        input_x, input_x2, label_x, domain_x, input_u, input_u2 = parsed_data
        input_x = torch.split(input_x, self.split_batch, 0)
        input_x2 = torch.split(input_x2, self.split_batch, 0)
        label_x = torch.split(label_x, self.split_batch, 0)
        domain_x = torch.split(domain_x, self.split_batch, 0)
        domain_x = [d[0].item() for d in domain_x]

        # x = data with small augmentations. x2 = data with large augmentations
        # They both correspond to the same datapoints. Same scheme for u and u2.

        # Generate pseudo label
        with torch.no_grad():
            # Unsupervised predictions
            feat_u = self.F(input_u)
            pred_u = []
            for k in range(self.dm.num_source_domains):
                pred_uk = self.E(k, feat_u)
                pred_uk = pred_uk.unsqueeze(1)
                pred_u.append(pred_uk)
            pred_u = torch.cat(pred_u, 1)  # (B, K, C)
            # Pseudolabel = weighted predictions
            u_filter = self.G(feat_u)  # (B, K)
            label_u_mask = (u_filter.max(1)[0] >= self.conf_thre
                            )  # (B). 1 if >=1 expert > thre, 0 otherwise
            new_u_filter = torch.zeros(*u_filter.shape).to(self.device)
            for i, row in enumerate(u_filter):
                j_max = row.max(0)[1]
                new_u_filter[i, j_max] = 1
            u_filter = new_u_filter
            d_closest = self.d_closest(u_filter).max(0)[1]
            u_filter = u_filter.unsqueeze(2).expand(*pred_u.shape)
            pred_fu = (pred_u * u_filter).sum(
                1)  # Zero out all non chosen experts
            pseudo_label_u = pred_fu.max(1)[1]  # (B)
            pseudo_label_u = create_onehot(pseudo_label_u,
                                           self.num_classes).to(self.device)
        # Init losses
        loss_x = 0
        loss_cr = 0
        acc_x = 0
        loss_filter = 0
        acc_filter = 0

        # Supervised and unsupervised features
        feat_x = [self.F(x) for x in input_x]
        feat_x2 = [self.F(x) for x in input_x2]
        feat_u2 = self.F(input_u2)

        for feat_xi, feat_x2i, label_xi, i in zip(feat_x, feat_x2, label_x,
                                                  domain_x):
            cr_s = [j for j in domain_x if j != i]

            # Learning expert
            pred_xi = self.E(i, feat_xi)
            expert_label_xi = pred_xi.detach()
            if self.is_regressive:
                loss_x += ((pred_xi - label_xi)**2).sum(1).mean()
            else:
                loss_x += (-label_xi * torch.log(pred_xi + 1e-5)).sum(1).mean()
                acc_x += compute_accuracy(pred_xi.detach(),
                                          label_xi.max(1)[1])[0].item()

            x_filter = self.G(feat_xi)
            # Filter must be 1 for expert, 0 otherwise
            filter_label = torch.Tensor([0 for _ in range(len(domain_x))
                                         ]).to(self.device)
            filter_label[i] = 1
            filter_label = filter_label.unsqueeze(0).expand(*x_filter.shape)
            loss_filter += (-filter_label *
                            torch.log(x_filter + 1e-5)).sum(1).mean()
            acc_filter += compute_accuracy(x_filter.detach(),
                                           filter_label.max(1)[1])[0].item()

            # Consistency regularization - Mean must follow the leading expert
            cr_pred = []
            for j in cr_s:
                pred_j = self.E(j, feat_x2i)
                pred_j = pred_j.unsqueeze(1)
                cr_pred.append(pred_j)
            cr_pred = torch.cat(cr_pred, 1).mean(1)
            loss_cr += ((cr_pred - expert_label_xi)**2).sum(1).mean()

        loss_x /= self.n_domain
        loss_cr /= self.n_domain
        if not self.is_regressive:
            acc_x /= self.n_domain
        loss_filter /= self.n_domain
        acc_filter /= self.n_domain

        # Unsupervised loss
        pred_u = []
        for k in range(self.dm.num_source_domains):
            pred_uk = self.E(k, feat_u2)
            pred_uk = pred_uk.unsqueeze(1)
            pred_u.append(pred_uk)
        pred_u = torch.cat(pred_u, 1).to(self.device)
        pred_u = pred_u.mean(1)
        if self.is_regressive:
            l_u = (-pseudo_label_u * torch.log(pred_u + 1e-5)).sum(1)
        else:
            l_u = ((pseudo_label_u - pred_u)**2).sum(1).mean()
        loss_u = (l_u * label_u_mask).mean()

        loss = 0
        loss += loss_x
        loss += loss_cr
        loss += loss_filter
        loss += loss_u * self.weight_u
        self.model_backward_and_update(loss)

        loss_summary = {
            'loss_x': loss_x.item(),
            'loss_filter': loss_filter.item(),
            'acc_filter': acc_filter,
            'loss_cr': loss_cr.item(),
            'loss_u': loss_u.item(),
            #'d_closest': d_closest.max(0)[1]
            'd_closest': d_closest.item()
        }
        if not self.is_regressive:
            loss_summary['acc_x'] = acc_x

        if (self.batch_idx + 1) == self.num_batches:
            self.update_lr()

        return loss_summary
예제 #6
0
    def forward_backward(self, batch_x, batch_u):
        parsed_data = self.parse_batch_train(batch_x, batch_u)
        input_x, input_x2, label_x, domain_x, input_u, input_u2 = parsed_data

        input_x = torch.split(input_x, self.split_batch, 0)
        input_x2 = torch.split(input_x2, self.split_batch, 0)
        label_x = torch.split(label_x, self.split_batch, 0)
        domain_x = torch.split(domain_x, self.split_batch, 0)
        domain_x = [d[0].item() for d in domain_x]
        # Generate pseudo label
        with torch.no_grad():
            feat_u = self.F(input_u)
            pred_u = []
            for k in range(self.dm.num_source_domains):
                pred_uk = self.E(k, feat_u)
                pred_uk = pred_uk.unsqueeze(1)
                pred_u.append(pred_uk)
            pred_u = torch.cat(pred_u, 1)  # (B, K, C)
            # Get the highest probability and index (label) for each expert
            experts_max_p, experts_max_idx = pred_u.max(2)  # (B, K)
            # Get the most confident expert
            max_expert_p, max_expert_idx = experts_max_p.max(1)  # (B)
            pseudo_label_u = []
            for i, experts_label in zip(max_expert_idx, experts_max_idx):
                pseudo_label_u.append(experts_label[i])
            pseudo_label_u = torch.stack(pseudo_label_u, 0)
            pseudo_label_u = create_onehot(pseudo_label_u, self.num_classes)
            pseudo_label_u = pseudo_label_u.to(self.device)
            label_u_mask = (max_expert_p >= self.conf_thre).float()

        loss_x = 0
        loss_cr = 0
        acc_x = 0

        feat_x = [self.F(x) for x in input_x]
        feat_x2 = [self.F(x) for x in input_x2]
        feat_u2 = self.F(input_u2)

        for feat_xi, feat_x2i, label_xi, i in zip(feat_x, feat_x2, label_x,
                                                  domain_x):
            cr_s = [j for j in domain_x if j != i]

            # Learning expert
            pred_xi = self.E(i, feat_xi)
            loss_x += (-label_xi * torch.log(pred_xi + 1e-5)).sum(1).mean()
            expert_label_xi = pred_xi.detach()
            acc_x += compute_accuracy(pred_xi.detach(),
                                      label_xi.max(1)[1])[0].item()

            # Consistency regularization
            cr_pred = []
            for j in cr_s:
                pred_j = self.E(j, feat_x2i)
                pred_j = pred_j.unsqueeze(1)
                cr_pred.append(pred_j)
            cr_pred = torch.cat(cr_pred, 1)
            cr_pred = cr_pred.mean(1)
            loss_cr += ((cr_pred - expert_label_xi)**2).sum(1).mean()

        loss_x /= self.n_domain
        loss_cr /= self.n_domain
        acc_x /= self.n_domain

        # Unsupervised loss
        pred_u = []
        for k in range(self.dm.num_source_domains):
            pred_uk = self.E(k, feat_u2)
            pred_uk = pred_uk.unsqueeze(1)
            pred_u.append(pred_uk)
        pred_u = torch.cat(pred_u, 1)
        pred_u = pred_u.mean(1)
        l_u = (-pseudo_label_u * torch.log(pred_u + 1e-5)).sum(1)
        loss_u = (l_u * label_u_mask).mean()

        loss = 0
        loss += loss_x
        loss += loss_cr
        loss += loss_u * self.weight_u
        self.model_backward_and_update(loss)

        loss_summary = {
            'loss_x': loss_x.item(),
            'acc_x': acc_x,
            'loss_cr': loss_cr.item(),
            'loss_u': loss_u.item()
        }

        if (self.batch_idx + 1) == self.num_batches:
            self.update_lr()

        return loss_summary