# generator model = FullNetwork(vp_value_count=VP_VALUE_COUNT, stdev=STDEV, output_shape=(BATCH_SIZE, CHANNELS, FRAMES, HEIGHT, WIDTH)) model = model.to(device) if device == 'cuda': net = torch.nn.DataParallel(model) cudnn.benchmark = True criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=LR) # data trainset = NTUDataset(root_dir=data_root_dir, data_file=train_split, param_file=param_file, resize_height=HEIGHT, resize_width=WIDTH, clip_len=FRAMES, skip_len=SKIP_LEN, random_all=RANDOM_ALL, precrop=PRECROP) trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2) testset = NTUDataset(root_dir=data_root_dir, data_file=test_split, param_file=param_file, resize_height=HEIGHT, resize_width=WIDTH, clip_len=FRAMES, skip_len=SKIP_LEN, random_all=RANDOM_ALL, precrop=PRECROP) testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2) elif DATASET.lower() == 'panoptic': data_root_dir, train_split, test_split, close_cams_file, weight_file = panoptic_config() # generator model = FullNetwork(vp_value_count=VP_VALUE_COUNT, stdev=STDEV, output_shape=(BATCH_SIZE, CHANNELS, FRAMES, HEIGHT, WIDTH), use_est_vp=False)
# # for sample in data_file: # sample = sample.split(' ') # sample_id = sample[0][sample[0].index('/') + 1:] # scene, pid, rid, action = decrypt_vid_name(sample_id) # print(action) # if action == 18: # if pid not in actors: # actors.append(pid) # # actors.sort() # # print(actors) trainset = NTUDataset(root_dir=data_root_dir, data_file=train_split, param_file=param_file, resize_height=HEIGHT, resize_width=WIDTH, clip_len=FRAMES, skip_len=SKIP_LEN, random_all=RANDOM_ALL, precrop=PRECROP, diff_actors=DIFF_ACTORS, diff_scenes=DIFF_SCENES) trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2) for batch_idx, info in enumerate(trainloader): if info[0] != info[1]: print('cry') # print(info) # import torch # x = torch.tensor([2.0,2.0]) # print(x.requires_grad_()) # x = x.requires_grad_()