def main(): global scheduler data_urls = { "slot_train_data.json": "http://xbot.bslience.cn/slot_train_data.json", "slot_val_data.json": "http://xbot.bslience.cn/slot_val_data.json", "slot_test_data.json": "http://xbot.bslience.cn/slot_test_data.json", } # load config root_path = get_root_path() config_path = os.path.join( root_path, "src/xbot/config/nlu/crosswoz_all_context_nlu_slot.json") config = json.load(open(config_path)) data_path = config["data_dir"] data_path = os.patgith.join(root_path, data_path) output_dir = config["output_dir"] output_dir = os.path.join(root_path, output_dir) log_dir = config["log_dir"] output_dir = os.path.join(root_path, output_dir) device = config["DEVICE"] # download data for data_key, url in data_urls.items(): dst = os.path.join(os.path.join(data_path, data_key)) if not os.path.exists(dst): download_from_url(url, dst) set_seed(config["seed"]) intent_vocab = json.load( open(os.path.join(data_path, "intent_vocab.json"), encoding="utf-8")) tag_vocab = json.load( open(os.path.join(data_path, "tag_vocab.json"), encoding="utf-8")) dataloader = Dataloader( intent_vocab=intent_vocab, tag_vocab=tag_vocab, pretrained_weights=config["model"]["pretrained_weights"], ) for data_key in ["train", "val", "test"]: dataloader.load_data( json.load( open(os.path.join(data_path, "slot_{}_data.json".format(data_key)), encoding="utf-8")), data_key, cut_sen_len=config["cut_sen_len"], use_bert_tokenizer=config["use_bert_tokenizer"], ) print("{} set size: {}".format(data_key, len(dataloader.data[data_key]))) # output and log dir if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(log_dir): os.makedirs(log_dir) writer = SummaryWriter(log_dir) # model model = SlotWithBert(config["model"], device, dataloader.tag_dim) model.to(device) if config["model"]["finetune"]: no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": config["model"]["weight_decay"], }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=config["model"]["learning_rate"], eps=config["model"]["adam_epsilon"], ) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=config["model"]["warmup_steps"], num_training_steps=config["model"]["max_step"], ) else: for n, p in model.named_parameters(): if "bert_policy" in n: p.requires_grad = False optimizer = torch.optim.Adam( filter(lambda p: p.requires_grad, model.parameters()), lr=config["model"]["learning_rate"], ) max_step = config["model"]["max_step"] check_step = config["model"]["check_step"] batch_size = config["model"]["batch_size"] model.zero_grad() train_slot_loss = 0 best_val_f1 = 0.0 writer.add_text("config", json.dumps(config)) for step in range(1, max_step + 1): model.train() batched_data = dataloader.get_train_batch(batch_size) batched_data = tuple(t.to(device) for t in batched_data) ( word_seq_tensor, tag_seq_tensor, word_mask_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor, ) = batched_data if not config["model"]["context"]: context_seq_tensor, context_mask_tensor = None, None _, slot_loss = model( word_seq_tensor, word_mask_tensor, tag_seq_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor, ) train_slot_loss += slot_loss.item() loss = slot_loss loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() if config["model"]["finetune"]: scheduler.step() # Update learning rate schedule model.zero_grad() if step % check_step == 0: train_slot_loss = train_slot_loss / check_step print("[%d|%d] step" % (step, max_step)) print("\t slot loss:", train_slot_loss) predict_golden = {"slot": [], "overall": []} val_slot_loss = 0 model.eval() for pad_batch, ori_batch, real_batch_size in dataloader.yield_batches( batch_size, data_key="val"): pad_batch = tuple(t.to(device) for t in pad_batch) ( word_seq_tensor, tag_seq_tensor, word_mask_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor, ) = pad_batch if not config["model"]["context"]: context_seq_tensor, context_mask_tensor = None, None with torch.no_grad(): slot_logits, slot_loss = model( word_seq_tensor, word_mask_tensor, tag_seq_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor, ) val_slot_loss += slot_loss.item() * real_batch_size for j in range(real_batch_size): predicts = recover_intent( dataloader, slot_logits[j], tag_mask_tensor[j], ori_batch[j][0], ori_batch[j][1], ) labels = ori_batch[j][2] predict_golden["slot"].append({ "predict": [x for x in predicts if is_slot_da(x)], "golden": [x for x in labels if is_slot_da(x)], }) total = len(dataloader.data["val"]) val_slot_loss /= total print("%d samples val" % total) print("\t slot loss:", val_slot_loss) writer.add_scalar("slot_loss/train", train_slot_loss, global_step=step) writer.add_scalar("slot_loss/val", val_slot_loss, global_step=step) precision, recall, F1 = calculate_f1(predict_golden["slot"]) print("-" * 20 + "slot" + "-" * 20) print("\t Precision: %.2f" % (100 * precision)) print("\t Recall: %.2f" % (100 * recall)) print("\t F1: %.2f" % (100 * F1)) writer.add_scalar("val_{}/precision".format("slot"), precision, global_step=step) writer.add_scalar("val_{}/recall".format("slot"), recall, global_step=step) writer.add_scalar("val_{}/F1".format("slot"), F1, global_step=step) if F1 > best_val_f1: best_val_f1 = F1 torch.save( model.state_dict(), os.path.join(output_dir, "pytorch_model_nlu_slot.pt"), ) print("best val F1 %.4f" % best_val_f1) print("save on", output_dir) train_slot_loss = 0 writer.add_text("val overall F1", "%.2f" % (100 * best_val_f1)) writer.close() model_path = os.path.join(output_dir, "pytorch_model_nlu_slot.pt") torch.save(model.state_dict(), model_path)
optimizer = torch.optim.Adam( filter(lambda p: p.requires_grad, model.parameters()), lr=config["model"]["learning_rate"], ) max_step = config["model"]["max_step"] check_step = config["model"]["check_step"] batch_size = config["model"]["batch_size"] model.zero_grad() train_slot_loss = 0 best_val_f1 = 0.0 writer.add_text("config", json.dumps(config)) for step in range(1, max_step + 1): model.train() batched_data = dataloader.get_train_batch(batch_size) batched_data = tuple(t.to(device) for t in batched_data) ( word_seq_tensor, tag_seq_tensor, word_mask_tensor, tag_mask_tensor, context_seq_tensor, context_mask_tensor, ) = batched_data if not config["model"]["context"]: context_seq_tensor, context_mask_tensor = None, None _, slot_loss = model( word_seq_tensor, word_mask_tensor,