def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--vocab_file", default='bert-base-uncased-vocab.txt', type=str, required=True) parser.add_argument("--model_file", default='bert-base-uncased.tar.gz', type=str, required=True) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model checkpoints and predictions will be written." ) parser.add_argument( "--predict_dir", default=None, type=str, required=True, help="The output directory where the predictions will be written.") # Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument( "--predict_file", default=None, type=str, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json" ) parser.add_argument( "--max_seq_length", default=384, type=int, help= "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ) parser.add_argument( "--doc_stride", default=128, type=int, help= "When splitting up a long document into chunks, how much stride to take between chunks." ) parser.add_argument( "--max_query_length", default=64, type=int, help= "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=2.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " "of training.") parser.add_argument( "--n_best_size", default=20, type=int, help= "The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument( "--max_answer_length", default=30, type=int, help= "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument( "--verbose_logging", default=False, action='store_true', help= "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--view_id', type=int, default=1, help="view id of multi-view co-training(two-view)") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( "--do_lower_case", default=True, action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( '--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") # Base setting parser.add_argument('--pretrain', type=str, default=None) parser.add_argument('--max_ctx', type=int, default=2) parser.add_argument('--task_name', type=str, default='coqa_yesno') parser.add_argument('--bert_name', type=str, default='baseline') parser.add_argument('--reader_name', type=str, default='coqa') # model parameters parser.add_argument('--evidence_lambda', type=float, default=0.8) parser.add_argument('--tf_layers', type=int, default=1) parser.add_argument('--tf_inter_size', type=int, default=3072) # Parameters for running labeling model parser.add_argument('--do_label', default=False, action='store_true') parser.add_argument('--sentence_id_files', nargs='*') parser.add_argument('--weight_threshold', type=float, default=0.0) parser.add_argument('--only_correct', default=False, action='store_true') parser.add_argument('--label_threshold', type=float, default=0.0) args = parser.parse_args() logger = setting_logger(args.output_dir) logger.info('================== Program start. ========================') model_params = prepare_model_params(args) read_params = prepare_read_params(args) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified." ) if args.do_train: if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError( "Output directory () already exists and is not empty.") os.makedirs(args.output_dir, exist_ok=True) if args.do_predict: os.makedirs(args.predict_dir, exist_ok=True) tokenizer = BertTokenizer.from_pretrained(args.vocab_file) data_reader = initialize_reader(args.reader_name) num_train_steps = None if args.do_train or args.do_label: train_examples = data_reader.read(input_file=args.train_file, **read_params) cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}_{5}'.format( args.bert_model, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), str(args.max_ctx), str(args.task_name)) try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) except FileNotFoundError: train_features = data_reader.convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=True) if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) print(train_features[-1].unique_id) num_train_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model if args.pretrain is not None: logger.info('Load pretrained model from {}'.format(args.pretrain)) model_state_dict = torch.load(args.pretrain, map_location='cuda:0') model = initialize_model(args.bert_name, args.model_file, state_dict=model_state_dict, **model_params) else: model = initialize_model(args.bert_name, args.model_file, **model_params) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) # hack to remove pooler, which is not used # thus it produce None grad that break apex param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_steps if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=t_total) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=t_total) warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=t_total) # Prepare data eval_examples = data_reader.read(input_file=args.predict_file, **read_params) eval_features = data_reader.convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=False) eval_tensors = data_reader.data_to_tensors(eval_features) eval_data = TensorDataset(*eval_tensors) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) if args.do_train: if args.do_label: logger.info('Training in State Wise.') sentence_id_file_list = args.sentence_id_files if sentence_id_file_list is not None: for file in sentence_id_file_list: train_features = data_reader.generate_features_sentence_ids( train_features, file) else: train_features = data_reader.mask_all_sentence_ids( train_features) logger.info('No sentence id supervision is found.') else: logger.info('Training in traditional way.') logger.info("Start training") train_loss = AverageMeter() best_acc = 0.0 summary_writer = SummaryWriter(log_dir=args.output_dir) global_step = 0 eval_loss = AverageMeter() train_tensors = data_reader.data_to_tensors(train_features) train_data = TensorDataset(*train_tensors) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) for epoch in trange(int(args.num_train_epochs), desc="Epoch"): # Train model.train() for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration")): if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( batch, train_features, do_label=args.do_label, model_state=ModelState.Train) loss = model(**inputs)['loss'] if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used and handles this automatically lr_this_step = args.learning_rate * warmup_linear.get_lr( global_step / t_total, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step if args.fp16: summary_writer.add_scalar('lr', lr_this_step, global_step) else: summary_writer.add_scalar('lr', optimizer.get_lr()[0], global_step) optimizer.step() optimizer.zero_grad() global_step += 1 train_loss.update(loss.item(), args.train_batch_size) summary_writer.add_scalar('train_loss', train_loss.avg, global_step) summary_writer.add_scalar('lr', optimizer.get_lr()[0], global_step) # Evaluation model.eval() all_results = [] logger.info("Start evaluating") for eval_step, batch in enumerate( tqdm(eval_dataloader, desc="Evaluating")): if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( batch, eval_features, do_label=args.do_label, model_state=ModelState.Evaluate) with torch.no_grad(): output_dict = model(**inputs) loss, batch_choice_logits = output_dict[ 'loss'], output_dict['yesno_logits'] eval_loss.update(loss.item(), args.predict_batch_size) example_indices = batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu( ).tolist() eval_feature = eval_features[example_index.item()] unique_id = int(eval_feature.unique_id) all_results.append( RawResultChoice(unique_id=unique_id, choice_logits=choice_logits)) summary_writer.add_scalar('eval_loss', eval_loss.avg, epoch) eval_loss.reset() data_reader.write_predictions(eval_examples, eval_features, all_results, None, null_score_diff_threshold=0.0) yes_metric = data_reader.yesno_cate.f1_measure('yes', 'no') no_metric = data_reader.yesno_cate.f1_measure('no', 'yes') current_acc = yes_metric['accuracy'] summary_writer.add_scalar('eval_yes_f1', yes_metric['f1'], epoch) summary_writer.add_scalar('eval_yes_recall', yes_metric['recall'], epoch) summary_writer.add_scalar('eval_yes_precision', yes_metric['precision'], epoch) summary_writer.add_scalar('eval_no_f1', no_metric['f1'], epoch) summary_writer.add_scalar('eval_no_recall', no_metric['recall'], epoch) summary_writer.add_scalar('eval_no_precision', no_metric['precision'], epoch) summary_writer.add_scalar('eval_yesno_acc', current_acc, epoch) torch.cuda.empty_cache() if current_acc > best_acc: best_acc = current_acc model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) logger.info('Epoch: %d, Accuracy: %f (Best Accuracy: %f)' % (epoch, current_acc, best_acc)) data_reader.yesno_cate.reset() summary_writer.close() # Loading trained model. output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") model_state_dict = torch.load(output_model_file, map_location='cuda:0') model = initialize_model(args.bert_name, args.model_file, state_dict=model_state_dict, **model_params) model.to(device) # Write Yes/No predictions if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): test_examples = eval_examples test_features = eval_features test_tensors = data_reader.data_to_tensors(test_features) test_data = TensorDataset(*test_tensors) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.predict_batch_size) logger.info("***** Running predictions *****") logger.info(" Num orig examples = %d", len(test_examples)) logger.info(" Num split examples = %d", len(test_features)) logger.info(" Batch size = %d", args.predict_batch_size) model.eval() all_results = [] logger.info("Start predicting yes/no on Dev set.") for batch in tqdm(test_dataloader, desc="Testing"): if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs(batch, test_features, do_label=args.do_label, model_state=ModelState.Test) with torch.no_grad(): batch_choice_logits = model(**inputs)['yesno_logits'] example_indices = batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu().tolist() test_feature = test_features[example_index.item()] unique_id = int(test_feature.unique_id) all_results.append( RawResultChoice(unique_id=unique_id, choice_logits=choice_logits)) output_prediction_file = os.path.join(args.predict_dir, 'predictions.json') data_reader.write_predictions(eval_examples, eval_features, all_results, output_prediction_file, null_score_diff_threshold=0.0) yes_metric = data_reader.yesno_cate.f1_measure('yes', 'no') no_metric = data_reader.yesno_cate.f1_measure('no', 'yes') logger.info('Yes Metrics: %s' % json.dumps(yes_metric, indent=2)) logger.info('No Metrics: %s' % json.dumps(no_metric, indent=2)) # Labeling sentence id. if args.do_label and (args.local_rank == -1 or torch.distributed.get_rank() == 0): test_examples = train_examples test_features = train_features test_tensors = data_reader.data_to_tensors(test_features) test_data = TensorDataset(*test_tensors) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.predict_batch_size) logger.info("***** Running labeling *****") logger.info(" Num orig examples = %d", len(test_examples)) logger.info(" Num split examples = %d", len(test_features)) logger.info(" Batch size = %d", args.predict_batch_size) model.eval() all_results = [] logger.info("Start labeling.") for batch in tqdm(test_dataloader, desc="Testing"): if n_gpu == 1: batch = batch_to_device(batch, device) inputs = data_reader.generate_inputs(batch, test_features, do_label=args.do_label, model_state=ModelState.Test) with torch.no_grad(): output_dict = model(**inputs) batch_choice_logits = output_dict['yesno_logits'] batch_max_weight_indexes = output_dict['max_weight_index'] batch_max_weight = output_dict['max_weight'] example_indices = batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu().tolist() max_weight_index = batch_max_weight_indexes[i].detach().cpu( ).tolist() max_weight = batch_max_weight[i].detach().cpu().tolist() test_feature = test_features[example_index.item()] unique_id = int(test_feature.unique_id) all_results.append( WeightResultChoice(unique_id=unique_id, choice_logits=choice_logits, max_weight_index=max_weight_index, max_weight=max_weight)) output_prediction_file = os.path.join(args.predict_dir, 'sentence_id_file.json') data_reader.predict_sentence_ids( test_examples, test_features, all_results, output_prediction_file, weight_threshold=args.weight_threshold, only_correct=args.only_correct, label_threshold=args.label_threshold)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--vocab_file", default='bert-base-uncased-vocab.txt', type=str, required=True) parser.add_argument("--model_file", default='bert-base-uncased.tar.gz', type=str, required=True) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model checkpoints and predictions will be written." ) parser.add_argument( "--predict_dir", default=None, type=str, required=True, help="The output directory where the predictions will be written.") # Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument( "--predict_file", default=None, type=str, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json" ) parser.add_argument("--test_file", default=None, type=str) parser.add_argument( "--max_seq_length", default=384, type=int, help= "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ) parser.add_argument( "--doc_stride", default=128, type=int, help= "When splitting up a long document into chunks, how much stride to take between chunks." ) parser.add_argument( "--max_query_length", default=64, type=int, help= "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=2.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " "of training.") parser.add_argument( "--n_best_size", default=20, type=int, help= "The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument( "--max_answer_length", default=30, type=int, help= "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument( "--verbose_logging", default=False, action='store_true', help= "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--view_id', type=int, default=1, help="view id of multi-view co-training(two-view)") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( "--do_lower_case", default=True, action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( '--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--save_all', default=False, action='store_true') # Base setting parser.add_argument('--pretrain', type=str, default=None) parser.add_argument('--max_ctx', type=int, default=2) parser.add_argument('--task_name', type=str, default='race') parser.add_argument('--bert_name', type=str, default='pool-race') parser.add_argument('--reader_name', type=str, default='race') parser.add_argument('--per_eval_step', type=int, default=10000000) # model parameters parser.add_argument('--evidence_lambda', type=float, default=0.8) # Parameters for running labeling model parser.add_argument('--do_label', default=False, action='store_true') parser.add_argument('--sentence_id_file', nargs='*') parser.add_argument('--weight_threshold', type=float, default=0.0) parser.add_argument('--only_correct', default=False, action='store_true') parser.add_argument('--label_threshold', type=float, default=0.0) parser.add_argument('--multi_evidence', default=False, action='store_true') parser.add_argument('--metric', default='accuracy', type=str) parser.add_argument('--num_evidence', default=1, type=int) parser.add_argument('--power_length', default=1., type=float) parser.add_argument('--num_choices', default=4, type=int) parser.add_argument('--split_type', default=0, type=int) parser.add_argument('--use_gumbel', default=False, action='store_true') parser.add_argument('--sample_steps', type=int, default=10) parser.add_argument('--reward_func', type=int, default=0) parser.add_argument('--freeze_bert', default=False, action='store_true') args = parser.parse_args() logger = setting_logger(args.output_dir) logger.info('================== Program start. ========================') logger.info( f'================== Running with seed {args.seed} ==========================' ) model_params = prepare_model_params(args) read_params = prepare_read_params(args) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict and not args.do_label: raise ValueError( "At least one of `do_train` or `do_predict` or `do_label` must be True." ) if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified." ) if args.do_train: if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError( "Output directory () already exists and is not empty.") os.makedirs(args.output_dir, exist_ok=True) if args.do_predict or args.do_label: os.makedirs(args.predict_dir, exist_ok=True) tokenizer = BertTokenizer.from_pretrained(args.vocab_file) data_reader = initialize_reader(args.reader_name) num_train_steps = None if args.do_train or args.do_label: train_examples = data_reader.read(input_file=args.train_file, **read_params) cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}_{5}'.format( args.bert_model, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), str(args.max_ctx), str(args.task_name)) try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) except FileNotFoundError: train_features = data_reader.convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length) if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) num_train_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model if args.pretrain is not None: logger.info('Load pretrained model from {}'.format(args.pretrain)) model_state_dict = torch.load(args.pretrain, map_location='cuda:0') model = initialize_model(args.bert_name, args.model_file, state_dict=model_state_dict, **model_params) else: model = initialize_model(args.bert_name, args.model_file, **model_params) # if args.fp16: # model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer param_optimizer = list(model.named_parameters()) # Remove frozen parameters param_optimizer = [n for n in param_optimizer if n[1].requires_grad] # hack to remove pooler, which is not used # thus it produce None grad that break apex param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_steps if num_train_steps is not None else -1 if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() # if args.fp16: # try: # from apex.optimizers import FP16_Optimizer # from apex.optimizers import FusedAdam # except ImportError: # raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") # # optimizer = FusedAdam(optimizer_grouped_parameters, # lr=args.learning_rate, # bias_correction=False, # max_grad_norm=1.0) # if args.loss_scale == 0: # optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) # else: # optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) # warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=t_total) # logger.info(f"warm up linear: warmup = {warmup_linear.warmup}, t_total = {warmup_linear.t_total}.") # else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=t_total) if args.fp16: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O2') # Prepare data eval_examples = data_reader.read(input_file=args.predict_file, **read_params) eval_features = data_reader.convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length) eval_tensors = data_reader.data_to_tensors(eval_features) eval_data = TensorDataset(*eval_tensors) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) if args.do_train: if args.do_label: logger.info('Training in State Wise.') sentence_label_file = args.sentence_id_file if sentence_label_file is not None: for file in sentence_label_file: train_features = data_reader.generate_features_sentence_ids( train_features, file) else: logger.info('No sentence id supervision is found.') else: logger.info('Training in traditional way.') logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Num train total optimization steps = %d", t_total) logger.info(" Batch size = %d", args.predict_batch_size) train_loss = AverageMeter() best_acc = 0.0 best_loss = 1000000 summary_writer = SummaryWriter(log_dir=args.output_dir) global_step = 0 eval_loss = AverageMeter() eval_accuracy = CategoricalAccuracy() eval_epoch = 0 train_tensors = data_reader.data_to_tensors(train_features) train_data = TensorDataset(*train_tensors) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) for epoch in range(int(args.num_train_epochs)): logger.info(f'Running at Epoch {epoch}') # Train for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", dynamic_ncols=True)): model.train() if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( batch, train_features, model_state=ModelState.Train) model_output = model(**inputs) loss = model_output['loss'] if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: # optimizer.backward(loss) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: # modify learning rate with special warm up BERT uses # if args.fp16 is False, BertAdam is used and handles this automatically # if args.fp16: # lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step) # for param_group in optimizer.param_groups: # param_group['lr'] = lr_this_step # summary_writer.add_scalar('lr', lr_this_step, global_step) # else: summary_writer.add_scalar('lr', optimizer.get_lr()[0], global_step) optimizer.step() optimizer.zero_grad() global_step += 1 train_loss.update(loss.item(), 1) summary_writer.add_scalar('train_loss', train_loss.avg, global_step) # logger.info(f'Train loss: {train_loss.avg}') if (step + 1) % args.per_eval_step == 0 or step == len( train_dataloader) - 1: # Evaluation model.eval() logger.info("Start evaluating") for _, eval_batch in enumerate( tqdm(eval_dataloader, desc="Evaluating", dynamic_ncols=True)): if n_gpu == 1: eval_batch = batch_to_device( eval_batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( eval_batch, eval_features, model_state=ModelState.Evaluate) with torch.no_grad(): output_dict = model(**inputs) loss, choice_logits = output_dict[ 'loss'], output_dict['choice_logits'] eval_loss.update(loss.item(), 1) eval_accuracy(choice_logits, inputs["labels"]) eval_epoch_loss = eval_loss.avg summary_writer.add_scalar('eval_loss', eval_epoch_loss, eval_epoch) eval_loss.reset() current_acc = eval_accuracy.get_metric(reset=True) summary_writer.add_scalar('eval_acc', current_acc, eval_epoch) torch.cuda.empty_cache() if args.save_all: model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self output_model_file = os.path.join( args.output_dir, f"pytorch_model_{eval_epoch}.bin") torch.save(model_to_save.state_dict(), output_model_file) if current_acc > best_acc: best_acc = current_acc model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self output_model_file = os.path.join( args.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) if eval_epoch_loss < best_loss: best_loss = eval_epoch_loss model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self output_model_file = os.path.join( args.output_dir, "pytorch_loss_model.bin") torch.save(model_to_save.state_dict(), output_model_file) logger.info( 'Eval Epoch: %d, Accuracy: %.4f (Best Accuracy: %.4f)' % (eval_epoch, current_acc, best_acc)) eval_epoch += 1 logger.info( f'Epoch {epoch}: Accuracy: {best_acc}, Train Loss: {train_loss.avg}' ) summary_writer.close() for output_model_name in ["pytorch_model.bin", "pytorch_loss_model.bin"]: # Loading trained model output_model_file = os.path.join(args.output_dir, output_model_name) model_state_dict = torch.load(output_model_file, map_location='cuda:0') model = initialize_model(args.bert_name, args.model_file, state_dict=model_state_dict, **model_params) model.to(device) # Write Yes/No predictions if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): test_examples = data_reader.read(args.test_file) test_features = data_reader.convert_examples_to_features( test_examples, tokenizer, args.max_seq_length) test_tensors = data_reader.data_to_tensors(test_features) test_data = TensorDataset(*test_tensors) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.predict_batch_size) logger.info("***** Running predictions *****") logger.info(" Num orig examples = %d", len(test_examples)) logger.info(" Num split examples = %d", len(test_features)) logger.info(" Batch size = %d", args.predict_batch_size) model.eval() all_results = [] test_acc = CategoricalAccuracy() logger.info("Start predicting yes/no on Dev set.") for batch in tqdm(test_dataloader, desc="Testing"): if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( batch, test_features, model_state=ModelState.Evaluate) with torch.no_grad(): batch_choice_logits = model(**inputs)['choice_logits'] test_acc(batch_choice_logits, inputs['labels']) example_indices = batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu( ).tolist() test_feature = test_features[example_index.item()] unique_id = int(test_feature.unique_id) all_results.append( RawResultChoice(unique_id=unique_id, choice_logits=choice_logits)) if "loss" in output_model_name: logger.info( 'Predicting question choice on test set using model with lowest loss on validation set.' ) output_prediction_file = os.path.join(args.predict_dir, 'loss_predictions.json') else: logger.info( 'Predicting question choice on test set using model with best accuracy on validation set,' ) output_prediction_file = os.path.join(args.predict_dir, 'predictions.json') data_reader.write_predictions(test_examples, test_features, all_results, output_prediction_file) logger.info( f"Accuracy on Test set: {test_acc.get_metric(reset=True)}") # Loading trained model. if args.metric == 'accuracy': logger.info("Load model with best accuracy on validation set.") output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") elif args.metric == 'loss': logger.info("Load model with lowest loss on validation set.") output_model_file = os.path.join(args.output_dir, "pytorch_loss_model.bin") else: raise RuntimeError( f"Wrong metric type for {args.metric}, which must be in ['accuracy', 'loss']." ) model_state_dict = torch.load(output_model_file, map_location='cuda:0') model = initialize_model(args.bert_name, args.model_file, state_dict=model_state_dict, **model_params) model.to(device) # Labeling sentence id. if args.do_label and (args.local_rank == -1 or torch.distributed.get_rank() == 0): f = open('debug_log.txt', 'w') def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def topk(sentence_sim): """ :param sentence_sim: numpy :return: """ max_length = min(args.num_evidence, len(sentence_sim)) sorted_scores = np.array(sorted(sentence_sim, reverse=True)) scores = [] for idx in range(max_length): scores.append(np.log(softmax(sorted_scores[idx:])[0])) scores = [np.mean(scores[:(j + 1)]) for j in range(max_length)] top_k = int(np.argmax(scores) + 1) sorted_scores = sorted(enumerate(sentence_sim), key=lambda x: x[1], reverse=True) evidence_ids = [x[0] for x in sorted_scores[:top_k]] sentence = { 'sentences': evidence_ids, 'value': float(np.exp(scores[top_k - 1])) } return sentence def batch_topk(sentence_sim, sentence_mask): batch_size = sentence_sim.size(0) num_choices = sentence_sim.size(1) sentence_sim = sentence_sim.numpy() + 1e-15 sentence_mask = sentence_mask.numpy() sentence_ids = [] for b in range(batch_size): choice_sentence_ids = [ topk(_sim[:int(sum(_mask))]) for _sim, _mask in zip(sentence_sim[b], sentence_mask[b]) ] assert len(choice_sentence_ids) == num_choices sentence_ids.append(choice_sentence_ids) return sentence_ids test_examples = train_examples test_features = train_features test_tensors = data_reader.data_to_tensors(test_features) test_data = TensorDataset(*test_tensors) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.predict_batch_size) logger.info("***** Running labeling *****") logger.info(" Num orig examples = %d", len(test_examples)) logger.info(" Num split examples = %d", len(test_features)) logger.info(" Batch size = %d", args.predict_batch_size) model.eval() all_results = [] logger.info("Start labeling.") for batch in tqdm(test_dataloader, desc="Testing"): if n_gpu == 1: batch = batch_to_device(batch, device) inputs = data_reader.generate_inputs(batch, test_features, model_state=ModelState.Test) with torch.no_grad(): output_dict = model(**inputs) batch_choice_logits, batch_sentence_logits = output_dict[ "choice_logits"], output_dict["sentence_logits"] batch_sentence_mask = output_dict["sentence_mask"] example_indices = batch[-1] # batch_beam_results = batch_choice_beam_search(batch_sentence_logits, batch_sentence_mask) batch_topk_results = batch_topk(batch_sentence_logits, batch_sentence_mask) for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu() evidence_list = batch_topk_results[i] test_feature = test_features[example_index.item()] unique_id = int(test_feature.unique_id) all_results.append( RawOutput(unique_id=unique_id, model_output={ "choice_logits": choice_logits, "evidence_list": evidence_list })) output_prediction_file = os.path.join(args.predict_dir, 'sentence_id_file.json') data_reader.predict_sentence_ids( test_examples, test_features, all_results, output_prediction_file, weight_threshold=args.weight_threshold, only_correct=args.only_correct, label_threshold=args.label_threshold)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese." ) parser.add_argument("--vocab_file", default='bert-base-uncased-vocab.txt', type=str, required=True) parser.add_argument("--model_file", default='bert-base-uncased.tar.gz', type=str, required=True) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model checkpoints and predictions will be written." ) parser.add_argument( "--predict_dir", default=None, type=str, required=True, help="The output directory where the predictions will be written.") # Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument( "--predict_file", default=None, type=str, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json" ) parser.add_argument("--test_file", default=None, type=str) parser.add_argument( "--max_seq_length", default=384, type=int, help= "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ) parser.add_argument( "--doc_stride", default=128, type=int, help= "When splitting up a long document into chunks, how much stride to take between chunks." ) parser.add_argument( "--max_query_length", default=64, type=int, help= "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=2.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " "of training.") parser.add_argument( "--n_best_size", default=20, type=int, help= "The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument( "--max_answer_length", default=30, type=int, help= "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument( "--verbose_logging", default=False, action='store_true', help= "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--view_id', type=int, default=1, help="view id of multi-view co-training(two-view)") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( "--do_lower_case", default=True, action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( '--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." ) parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--save_all', default=False, action='store_true') parser.add_argument('--max_grad_norm', default=1.0, type=float) parser.add_argument('--weight_decay', default=0.0, type=float) parser.add_argument('--adam_epsilon', default=1e-8, type=float) parser.add_argument('--patience', type=int, default=5) # Base setting parser.add_argument('--pretrain', type=str, default=None) parser.add_argument('--max_ctx', type=int, default=2) parser.add_argument('--task_name', type=str, default='coqa_yesno') parser.add_argument('--bert_name', type=str, default='baseline') parser.add_argument('--reader_name', type=str, default='coqa') parser.add_argument('--per_eval_step', type=int, default=10000000) # model parameters parser.add_argument('--evidence_lambda', type=float, default=0.8) parser.add_argument('--tf_layers', type=int, default=1) parser.add_argument('--tf_inter_size', type=int, default=3072) # Parameters for running labeling model parser.add_argument('--do_label', default=False, action='store_true') parser.add_argument('--sentence_id_file', type=str, default=None) parser.add_argument('--weight_threshold', type=float, default=0.0) parser.add_argument('--only_correct', default=False, action='store_true') parser.add_argument('--label_threshold', type=float, default=0.0) parser.add_argument('--use_gumbel', default=False, action='store_true') parser.add_argument('--sample_steps', type=int, default=10) parser.add_argument('--reward_func', type=int, default=0) parser.add_argument('--freeze_bert', default=False, action='store_true') parser.add_argument('--num_evidence', default=1, type=int) parser.add_argument('--power_length', default=1., type=float) parser.add_argument('--split_type', default=0, type=int) parser.add_argument('--remove_evidence', default=False, action='store_true') parser.add_argument('--remove_question', default=False, action='store_true') parser.add_argument('--remove_passage', default=False, action='store_true') parser.add_argument('--remove_dict', default=None, type=str) args = parser.parse_args() logger = setting_logger(args.output_dir) logger.info('================== Program start. ========================') model_params = prepare_model_params(args) read_params = prepare_read_params(args) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict and not args.do_label: raise ValueError( "At least one of `do_train` or `do_predict` or `do_label` must be True." ) if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified." ) if args.do_train: if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError( "Output directory () already exists and is not empty.") os.makedirs(args.output_dir, exist_ok=True) os.makedirs(os.path.join(args.output_dir, "best_model"), exist_ok=True) os.makedirs(os.path.join(args.output_dir, "best_loss_model"), exist_ok=True) if args.do_predict or args.do_label: os.makedirs(args.predict_dir, exist_ok=True) # tokenizer = BertTokenizer.from_pretrained(args.vocab_file) tokenizer = get_tokenizer(args.bert_model).from_pretrained(args.vocab_file) data_reader = initialize_reader(args.reader_name) num_train_steps = None if args.do_train or args.do_label: train_examples = data_reader.read(input_file=args.train_file, **read_params) cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}_{5}'.format( args.bert_model, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), str(args.max_ctx), str(args.task_name)) try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) except FileNotFoundError: train_features = data_reader.convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length) if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) num_train_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model if args.pretrain is not None: logger.info('Load pretrained model from {}'.format(args.pretrain)) model_state_dict = torch.load(args.pretrain, map_location='cuda:0') model = initialize_model(args.bert_name, args.model_file, state_dict=model_state_dict, **model_params) else: model = initialize_model(args.bert_name, args.model_file, **model_params) # if args.fp16: # model.half() model.to(device) t_total = num_train_steps if num_train_steps is not None else -1 if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': args.weight_decay }, { 'params': [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=int(args.warmup_proportion * t_total), t_total=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare data eval_examples = data_reader.read(input_file=args.predict_file, **read_params) eval_features = data_reader.convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length) eval_tensors = data_reader.data_to_tensors(eval_features) eval_data = TensorDataset(*eval_tensors) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) if args.do_train: if args.do_label: logger.info('Training in State Wise.') sentence_id_file = args.sentence_id_file if sentence_id_file is not None: # for file in sentence_id_file_list: # train_features = data_reader.generate_features_sentence_ids(train_features, file) train_features = data_reader.generate_features_sentence_ids( train_features, sentence_id_file) else: # train_features = data_reader.mask_all_sentence_ids(train_features) logger.info('No sentence id supervision is found.') else: logger.info('Training in traditional way.') logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Num total optimization steps = %d", t_total) logger.info(" Batch size = %d", args.train_batch_size) train_loss = AverageMeter() summary_writer = SummaryWriter(log_dir=args.output_dir) global_step = 0 eval_loss = AverageMeter() best_metric = 0.0 eval_acc = CategoricalAccuracy() last_update = 0 train_tensors = data_reader.data_to_tensors(train_features) train_data = TensorDataset(*train_tensors) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) for epoch in trange(int(args.num_train_epochs)): logger.info(f'Running at Epoch {epoch}') # Train for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", dynamic_ncols=True)): model.train() if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( batch, train_features, model_state=ModelState.Train) loss = model(**inputs)['loss'] if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() model.zero_grad() global_step += 1 lr_this_step = scheduler.get_lr()[0] summary_writer.add_scalar('lr', lr_this_step, global_step) batch_size = inputs["answer_choice"].size(0) train_loss.update(loss.item() * batch_size, batch_size) summary_writer.add_scalar('train_loss', train_loss.avg, global_step) if global_step % args.per_eval_step == 0: # Evaluation model.eval() all_results = [] logger.info("Start evaluating") for _, eval_batch in enumerate( tqdm(eval_dataloader, desc="Evaluating", dynamic_ncols=True)): if n_gpu == 1: eval_batch = batch_to_device( eval_batch, device ) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs( eval_batch, eval_features, model_state=ModelState.Evaluate) batch_size = inputs["answer_choice"].size(0) with torch.no_grad(): output_dict = model(**inputs) loss, batch_choice_logits = output_dict[ 'loss'], output_dict['yesno_logits'] eval_acc(batch_choice_logits, inputs["answer_choice"]) eval_loss.update(loss.item() * batch_size, batch_size) example_indices = eval_batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach( ).cpu().tolist() eval_feature = eval_features[ example_index.item()] unique_id = int(eval_feature.unique_id) # print(unique_id) all_results.append( RawResultChoice( unique_id=unique_id, choice_logits=choice_logits)) eval_epoch_loss = eval_loss.avg summary_writer.add_scalar('eval_loss', eval_epoch_loss, global_step) eval_loss.reset() _, metric, save_metric = data_reader.write_predictions( eval_examples, eval_features, all_results, None) logger.info(f"Global step: {global_step}") for k, v in metric.items(): logger.info(f"{k}: {v}") summary_writer.add_scalar(f'eval_{k}', v, global_step) logger.info( f"Eval accuracy: {eval_acc.get_metric(reset=True)}" ) torch.cuda.empty_cache() if save_metric[1] > best_metric: best_metric = save_metric[1] model_to_save = model.module if hasattr( model, 'module' ) else model # Only save the model it-self output_model_file = os.path.join( args.output_dir, "best_model") model_to_save.save_pretrained(output_model_file) # torch.save(model_to_save.state_dict(), output_model_file) last_update = global_step // args.per_eval_step logger.info( 'Global step: %d, %s: %f (Best %s: %f)' % (global_step, save_metric[0], save_metric[1], save_metric[0], best_metric)) if global_step // args.per_eval_step - last_update >= args.patience: logger.info( f"Training reach patience: {args.patience}, training stopped." ) break if global_step // args.per_eval_step - last_update >= args.patience: break summary_writer.close() # Loading trained model. output_model_file = os.path.join(args.output_dir, "best_model") # model_state_dict = torch.load(output_model_file, map_location='cuda:0') model = initialize_model(args.bert_name, output_model_file, **model_params) model.to(device) # Write Yes/No predictions if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): test_examples = eval_examples test_features = eval_features test_tensors = data_reader.data_to_tensors(test_features) test_data = TensorDataset(*test_tensors) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.predict_batch_size) logger.info("***** Running predictions *****") logger.info(" Num orig examples = %d", len(test_examples)) logger.info(" Num split examples = %d", len(test_features)) logger.info(" Batch size = %d", args.predict_batch_size) model.eval() all_results = [] logger.info("Start predicting yes/no on Dev set.") for batch in tqdm(test_dataloader, desc="Testing", dynamic_ncols=True): if n_gpu == 1: batch = batch_to_device( batch, device) # multi-gpu does scattering it-self inputs = data_reader.generate_inputs(batch, test_features, model_state=ModelState.Test) with torch.no_grad(): batch_choice_logits = model(**inputs)['yesno_logits'] example_indices = batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu().tolist() test_feature = test_features[example_index.item()] unique_id = int(test_feature.unique_id) all_results.append( RawResultChoice(unique_id=unique_id, choice_logits=choice_logits)) output_prediction_file = os.path.join(args.predict_dir, 'predictions.json') _, metric, _ = data_reader.write_predictions(eval_examples, eval_features, all_results, output_prediction_file) for k, v in metric.items(): logger.info(f'{k}: {v}') # Labeling sentence id. if args.do_label and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # f = open('debug_log.txt', 'w') def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def topk(sentence_sim): """ :param sentence_sim: numpy :return: """ max_length = min(args.num_evidence, len(sentence_sim)) sorted_scores = np.array(sorted(sentence_sim, reverse=True)) scores = [] for idx in range(max_length): scores.append(np.log(softmax(sorted_scores[idx:])[0])) scores = [np.mean(scores[:(j + 1)]) for j in range(max_length)] top_k = int(np.argmax(scores) + 1) sorted_scores = sorted(enumerate(sentence_sim), key=lambda x: x[1], reverse=True) evidence_ids = [x[0] for x in sorted_scores[:top_k]] sentence = { 'sentences': evidence_ids, 'value': float(np.exp(scores[top_k - 1])) } # print(f'value = {sentence["value"]}', file=f, flush=True) return sentence def batch_topk(sentence_sim, sentence_mask): sentence_sim = sentence_sim.squeeze( 1).detach().cpu().numpy() + 1e-15 sentence_mask = sentence_mask.detach().cpu().numpy() sentence_ids = [ topk(_sim[:int(sum(_mask))]) for _sim, _mask in zip(sentence_sim, sentence_mask) ] # print('=' * 20, file=f, flush=True) return sentence_ids test_examples = train_examples test_features = train_features test_tensors = data_reader.data_to_tensors(test_features) test_data = TensorDataset(*test_tensors) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.predict_batch_size) logger.info("***** Running labeling *****") logger.info(" Num orig examples = %d", len(test_examples)) logger.info(" Num split examples = %d", len(test_features)) logger.info(" Batch size = %d", args.predict_batch_size) model.eval() all_results = [] logger.info("Start labeling.") for batch in tqdm(test_dataloader, desc="Testing"): if n_gpu == 1: batch = batch_to_device(batch, device) inputs = data_reader.generate_inputs(batch, test_features, model_state=ModelState.Test) with torch.no_grad(): output_dict = model(**inputs) batch_choice_logits = output_dict['yesno_logits'] batch_beam_result = batch_topk(output_dict['sentence_sim'], output_dict['sentence_mask']) example_indices = batch[-1] for i, example_index in enumerate(example_indices): choice_logits = batch_choice_logits[i].detach().cpu().tolist() # max_weight_index = batch_max_weight_indexes[i].detach().cpu().tolist() # max_weight = batch_max_weight[i].detach().cpu().tolist() evidence = batch_beam_result[i] test_feature = test_features[example_index.item()] unique_id = int(test_feature.unique_id) all_results.append( RawOutput(unique_id=unique_id, model_output={ "choice_logits": choice_logits, "evidence": evidence })) # all_results.append( # WeightResultChoice(unique_id=unique_id, choice_logits=choice_logits, max_weight_index=max_weight_index, # max_weight=max_weight)) output_prediction_file = os.path.join(args.predict_dir, 'sentence_id_file.json') data_reader.predict_sentence_ids( test_examples, test_features, all_results, output_prediction_file, weight_threshold=args.weight_threshold, only_correct=args.only_correct, label_threshold=args.label_threshold)