labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=args.bidirectional)

    decoder = GreedyDecoder(labels)
    train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels,
                                       normalize=True, augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
                                      normalize=True, augment=False)
    if not args.distributed:
        train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
    else:
        train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size,
                                                    num_replicas=args.world_size, rank=args.rank)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers, batch_sampler=train_sampler)
    test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
                                  num_workers=args.num_workers)
    print("AudioDataLoader init done !")
    if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle(start_epoch)
    if not args.distributed:
        model = model.to(device)
    else :
        model.to(device)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], output_device=[device])
    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))
    # optimizer 实例化 需要 在 DistributedDataParallel 操作之后
    parameters = model.parameters()
예제 #2
0
def main():
    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    if params.rnn_type == 'gru' and params.rnn_act_type != 'tanh':
        print "ERROR: GRU does not currently support activations other than tanh"
        sys.exit()

    if params.rnn_type == 'rnn' and params.rnn_act_type != 'relu':
        print "ERROR: We should be using ReLU RNNs"
        sys.exit()

    print("=======================================================")
    for arg in vars(args):
        print "***%s = %s " % (arg.ljust(25), getattr(args, arg))
    print("=======================================================")

    save_folder = args.save_folder

    loss_results, cer_results, wer_results = torch.Tensor(
        params.epochs), torch.Tensor(params.epochs), torch.Tensor(
            params.epochs)
    best_wer = None
    try:
        os.makedirs(save_folder)
    except OSError as e:
        if e.errno == errno.EEXIST:
            print('Directory already exists.')
        else:
            raise
    criterion = CTCLoss()

    with open(params.labels_path) as label_file:
        labels = str(''.join(json.load(label_file)))
    audio_conf = dict(sample_rate=params.sample_rate,
                      window_size=params.window_size,
                      window_stride=params.window_stride,
                      window=params.window,
                      noise_dir=params.noise_dir,
                      noise_prob=params.noise_prob,
                      noise_levels=(params.noise_min, params.noise_max))

    train_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                       manifest_filepath=params.train_manifest,
                                       labels=labels,
                                       normalize=True,
                                       augment=params.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=params.val_manifest,
                                      labels=labels,
                                      normalize=True,
                                      augment=False)
    train_loader = AudioDataLoader(train_dataset,
                                   batch_size=params.batch_size,
                                   num_workers=1)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=params.batch_size,
                                  num_workers=1)

    rnn_type = params.rnn_type.lower()
    assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"

    model = DeepSpeech(rnn_hidden_size=params.hidden_size,
                       nb_layers=params.hidden_layers,
                       labels=labels,
                       rnn_type=supported_rnns[rnn_type],
                       audio_conf=audio_conf,
                       bidirectional=True,
                       rnn_activation=params.rnn_act_type,
                       bias=params.bias)

    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters,
                                lr=params.lr,
                                momentum=params.momentum,
                                nesterov=True,
                                weight_decay=params.l2)
    decoder = GreedyDecoder(labels)

    if args.continue_from:
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from)
        model.load_state_dict(package['state_dict'])
        optimizer.load_state_dict(package['optim_dict'])
        start_epoch = int(package.get(
            'epoch', 1)) - 1  # Python index start at 0 for training
        start_iter = package.get('iteration', None)
        if start_iter is None:
            start_epoch += 1  # Assume that we saved a model after an epoch finished, so start at the next epoch.
            start_iter = 0
        else:
            start_iter += 1
        avg_loss = int(package.get('avg_loss', 0))

        if args.start_epoch != -1:
            start_epoch = args.start_epoch

        loss_results[:
                     start_epoch], cer_results[:start_epoch], wer_results[:start_epoch] = package[
                         'loss_results'][:start_epoch], package[
                             'cer_results'][:start_epoch], package[
                                 'wer_results'][:start_epoch]
        print loss_results
        epoch = start_epoch

    else:
        avg_loss = 0
        start_epoch = 0
        start_iter = 0
        avg_training_loss = 0
    if params.cuda:
        model = torch.nn.DataParallel(model).cuda()

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    ctc_time = AverageMeter()

    for epoch in range(start_epoch, params.epochs):
        model.train()
        end = time.time()
        for i, (data) in enumerate(train_loader, start=start_iter):
            if i == len(train_loader):
                break
            inputs, targets, input_percentages, target_sizes = data
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = Variable(inputs, requires_grad=False)
            target_sizes = Variable(target_sizes, requires_grad=False)
            targets = Variable(targets, requires_grad=False)

            if params.cuda:
                inputs = inputs.cuda()

            out = model(inputs)
            out = out.transpose(0, 1)  # TxNxH

            seq_length = out.size(0)
            sizes = Variable(input_percentages.mul_(int(seq_length)).int(),
                             requires_grad=False)

            ctc_start_time = time.time()
            loss = criterion(out, targets, sizes, target_sizes)
            ctc_time.update(time.time() - ctc_start_time)

            loss = loss / inputs.size(0)  # average the loss by minibatch

            loss_sum = loss.data.sum()
            inf = float("inf")
            if loss_sum == inf or loss_sum == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0
            else:
                loss_value = loss.data[0]

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm(model.parameters(), params.max_norm)
            # SGD step
            optimizer.step()

            if params.cuda:
                torch.cuda.synchronize()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            print(
                'Epoch: [{0}][{1}/{2}]\t'
                'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                'CTC Time {ctc_time.val:.3f} ({ctc_time.avg:.3f})\t'
                'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                    (epoch + 1), (i + 1),
                    len(train_loader),
                    batch_time=batch_time,
                    data_time=data_time,
                    ctc_time=ctc_time,
                    loss=losses))

            del loss
            del out

        avg_loss /= len(train_loader)

        print('Training Summary Epoch: [{0}]\t'
              'Average Loss {loss:.3f}\t'.format(
                  epoch + 1,
                  loss=avg_loss,
              ))

        start_iter = 0  # Reset start iteration for next epoch
        total_cer, total_wer = 0, 0
        model.eval()

        wer, cer = eval_model(model, test_loader, decoder)

        loss_results[epoch] = avg_loss
        wer_results[epoch] = wer
        cer_results[epoch] = cer
        print(
            'Validation Summary Epoch: [{0}]\t'
            'Average WER {wer:.3f}\t'
            'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

        if args.checkpoint:
            file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1)
            torch.save(
                DeepSpeech.serialize(model,
                                     optimizer=optimizer,
                                     epoch=epoch,
                                     loss_results=loss_results,
                                     wer_results=wer_results,
                                     cer_results=cer_results), file_path)
        # anneal lr
        optim_state = optimizer.state_dict()
        optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0][
            'lr'] / params.learning_anneal
        optimizer.load_state_dict(optim_state)
        print('Learning rate annealed to: {lr:.6f}'.format(
            lr=optim_state['param_groups'][0]['lr']))

        if best_wer is None or best_wer > wer:
            print("Found better validated model, saving to %s" %
                  args.model_path)
            torch.save(
                DeepSpeech.serialize(model,
                                     optimizer=optimizer,
                                     epoch=epoch,
                                     loss_results=loss_results,
                                     wer_results=wer_results,
                                     cer_results=cer_results), args.model_path)
            best_wer = wer

        avg_loss = 0

        #If set to exit at a given accuracy, exit
        if params.exit_at_acc and (best_wer <= args.acc):
            break

    print("=======================================================")
    print "***Best WER = ", best_wer
    for arg in vars(args):
        print "***%s = %s " % (arg.ljust(25), getattr(args, arg))
    print("=======================================================")
예제 #3
0
                                 cutoff_prob=args.cutoff_prob,
                                 beam_width=args.beam_width,
                                 num_processes=args.lm_workers)
    elif args.decoder == "greedy":
        decoder = GreedyDecoder(model.labels,
                                blank_index=model.labels.index('_'))
    else:
        decoder = None
    target_decoder = GreedyDecoder(model.labels,
                                   blank_index=model.labels.index('_'))
    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=args.test_manifest,
                                      labels=model.labels,
                                      normalize=True)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)
    wer, cer, output_data = evaluate(test_loader=test_loader,
                                     device=device,
                                     model=model,
                                     decoder=decoder,
                                     target_decoder=target_decoder,
                                     save_output=args.save_output,
                                     verbose=args.verbose,
                                     half=args.half)

    print('Test Summary \t'
          'Average WER {wer:.3f}\t'
          'Average CER {cer:.3f}\t'.format(wer=wer, cer=cer))
    if args.save_output is not None:
        np.save(args.save_output, output_data)
예제 #4
0
파일: tune_decoder.py 프로젝트: gruly/DSA
def decode_dataset(logits, test_dataset, batch_size, lm_alpha, lm_beta, mesh_x,
                   mesh_y, index, labels, eval):
    print("Beginning decode for {}, {}".format(lm_alpha, lm_beta))
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=batch_size,
                                  num_workers=0)
    target_decoder = GreedyDecoder(labels, blank_index=labels.index('_'))
    decoder = BeamCTCDecoder(labels,
                             beam_width=args.beam_width,
                             cutoff_top_n=args.cutoff_top_n,
                             blank_index=labels.index('_'),
                             lm_path=args.lm_path,
                             alpha=lm_alpha,
                             beta=lm_beta,
                             num_processes=1)
    model_name = re.sub('.json.pth.tar', '', os.path.basename(args.model_path))
    ref_file = None
    if eval == 'concept':
        eval_dir = "%s/%s/%s" % (os.path.dirname(
            args.output_path), model_name, index)
        if not os.path.exists(eval_dir):
            os.makedirs(eval_dir)
        ref_file = open(
            "%s/%s_reference.txt" %
            (eval_dir, re.sub('.csv', '', os.path.basename(
                args.test_manifest))), 'w')
        trans_file = open(
            "%s/%s_transcription.txt" %
            (eval_dir, re.sub('.csv', '', os.path.basename(
                args.test_manifest))), 'w')
    total_cer, total_wer = 0, 0
    for i, (data) in enumerate(test_loader):
        inputs, targets, input_percentages, target_sizes, audio_ids = data

        # unflatten targets
        split_targets = []
        offset = 0
        for size in target_sizes:
            split_targets.append(targets[offset:offset + size])
            offset += size

        out = torch.from_numpy(logits[i][0])
        sizes = torch.from_numpy(logits[i][1])

        decoded_output, _, _, _, _ = decoder.decode(out, sizes)
        target_strings = target_decoder.convert_to_strings(split_targets)
        wer, cer = 0, 0
        for x in range(len(target_strings)):
            transcript, reference = decoded_output[x][0], target_strings[x][0]
            if eval == 'concept':
                ref_file.write(
                    reference.encode('utf-8') + "(" + audio_ids[x] + ")\n")
                trans_file.write(
                    transcript.encode('utf-8') + "(" + audio_ids[x] + ")\n")

            wer_inst = decoder.wer(transcript, reference) / float(
                len(reference.split()))
            cer_inst = decoder.cer(transcript, reference) / float(
                len(reference))
            wer += wer_inst
            cer += cer_inst
        total_cer += cer
        total_wer += wer
    ref_file.close()
    trans_file.close()
    wer = total_wer / len(test_loader.dataset)
    cer = total_cer / len(test_loader.dataset)
    if eval == 'concept':  # Concept error rate evaluation
        cmd = "perl /lium/buster1/ghannay/deepSpeech2/deepspeech.pytorch/data/eval.sclit_cer.pl %s" % (
            eval_dir)
        print("cmd  ", cmd)
        p = subprocess.Popen(cmd,
                             stdout=subprocess.PIPE,
                             stderr=subprocess.PIPE,
                             shell=True)
        coner, error = p.communicate()
        print(" coner  ", coner)
        return [mesh_x, mesh_y, lm_alpha, lm_beta, float(coner) / 100, cer]
    else:
        return [mesh_x, mesh_y, lm_alpha, lm_beta, wer, cer]
예제 #5
0
def main():
    args = parser.parse_args()
    save_folder = args.save_folder

    ########
    """
    loss_results, cer_results, wer_results = torch.Tensor(args.epochs), torch.Tensor(args.epochs), torch.Tensor(
        args.epochs)
    best_wer = None
    if args.visdom:
        from visdom import Visdom
        viz = Visdom()

        opts = [dict(title=args.visdom_id + ' Loss', ylabel='Loss', xlabel='Epoch'),
                dict(title=args.visdom_id + ' WER', ylabel='WER', xlabel='Epoch'),
                dict(title=args.visdom_id + ' CER', ylabel='CER', xlabel='Epoch')]

        viz_windows = [None, None, None]
        epochs = torch.arange(1, args.epochs + 1)
    if args.tensorboard:
        from logger import TensorBoardLogger
        try:
            os.makedirs(args.log_dir)
        except OSError as e:
            if e.errno == errno.EEXIST:
                print('Directory already exists.')
                for file in os.listdir(args.log_dir):
                    file_path = os.path.join(args.log_dir, file)
                    try:
                        if os.path.isfile(file_path):
                            os.unlink(file_path)
                    except Exception as e:
                        raise
            else:
                raise
        logger = TensorBoardLogger(args.log_dir)

    try:
        os.makedirs(save_folder)
    except OSError as e:
        if e.errno == errno.EEXIST:
            print('Directory already exists.')
        else:
            raise
    """
    ########

    ########
    """
    criterion = CTCLoss()
    """
    criterion = nn.CrossEntropyLoss()
    class_accu = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    class_accu_sum = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    class_accu_sum_120 = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    class_accu_sum_240 = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    class_accu_sum_360 = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    class_accu_sum_480 = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    ########

    with open(args.labels_path) as label_file:
        labels = str(''.join(json.load(label_file)))
    audio_conf = dict(sample_rate=args.sample_rate,
                      window_size=args.window_size,
                      window_stride=args.window_stride,
                      window=args.window,
                      noise_dir=args.noise_dir,
                      noise_prob=args.noise_prob,
                      noise_levels=(args.noise_min, args.noise_max))

    train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels,
                                       normalize=True, augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
                                      normalize=True, augment=False)
    train_loader = AudioDataLoader(train_dataset, batch_size=args.batch_size,
                                   num_workers=args.num_workers)
    test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    rnn_type = args.rnn_type.lower()
    assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
    ########
    """
    model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                       nb_layers=args.hidden_layers,
                       labels=labels,
                       rnn_type=supported_rnns[rnn_type],
                       audio_conf=audio_conf,
                       bidirectional=True,
                       cnn_features=args.cnn_features)
    """
    model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                       nb_layers=args.hidden_layers,
                       labels=labels,
                       rnn_type=supported_rnns[rnn_type],
                       audio_conf=audio_conf,
                       bidirectional=True,
                       cnn_features=args.cnn_features,
                       kernel=args.kernel,
                       stride=args.stride)
    ########

    ########
    #print(list(model.rnns.modules()))
    #for rnn in model.rnns.modules():
    #    print(rnn)#.flatten_parameters()
    #def flat_model(model):
    #    for m in model.modules():
    #        if isinstance(m, nn.LSTM):
    #            m.flatten_parameters()
    ########

    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters, lr=args.lr,
                                momentum=args.momentum, nesterov=True)

    ########
    #scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.learning_rate_decay_epochs, gamma=args.learning_rate_decay_rate)
    #scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
    ########

    ########
    """
    decoder = GreedyDecoder(labels)
    """
    ########

    ########
    """
    if args.continue_from:
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from)
        model.load_state_dict(package['state_dict'])
        optimizer.load_state_dict(package['optim_dict'])
        start_epoch = int(package.get('epoch', 1)) - 1  # Python index start at 0 for training
        start_iter = package.get('iteration', None)
        if start_iter is None:
            start_epoch += 1  # Assume that we saved a model after an epoch finished, so start at the next epoch.
            start_iter = 0
        else:
            start_iter += 1
        avg_loss = int(package.get('avg_loss', 0))
        loss_results, cer_results, wer_results = package['loss_results'], package[
            'cer_results'], package['wer_results']
        if args.visdom and \
                        package['loss_results'] is not None and start_epoch > 0:  # Add previous scores to visdom graph
            x_axis = epochs[0:start_epoch]
            y_axis = [loss_results[0:start_epoch], wer_results[0:start_epoch], cer_results[0:start_epoch]]
            for x in range(len(viz_windows)):
                viz_windows[x] = viz.line(
                    X=x_axis,
                    Y=y_axis[x],
                    opts=opts[x],
                )
        if args.tensorboard and \
                        package['loss_results'] is not None and start_epoch > 0:  # Previous scores to tensorboard logs
            for i in range(start_epoch):
                info = {
                    'Avg Train Loss': loss_results[i],
                    'Avg WER': wer_results[i],
                    'Avg CER': cer_results[i]
                }
                for tag, val in info.items():
                    logger.scalar_summary(tag, val, i + 1)
        if not args.no_bucketing and epoch != 0:
            print("Using bucketing sampler for the following epochs")
            train_dataset = SpectrogramDatasetWithLength(audio_conf=audio_conf, manifest_filepath=args.train_manifest,
                                                         labels=labels,
                                                         normalize=True, augment=args.augment)
            sampler = BucketingSampler(train_dataset)
            train_loader.sampler = sampler
    else:
        avg_loss = 0
        start_epoch = 0
        start_iter = 0
    """
    avg_loss = 0
    start_epoch = 0
    start_iter = 0

    best_train_accu = 0
    best_train_accu_sum = 0
    best_train_accu_sum_120 = 0
    best_train_accu_sum_240 = 0
    best_train_accu_sum_360 = 0
    best_train_accu_sum_480 = 0
    best_test_accu = 0
    best_test_accu_sum = 0
    best_test_accu_sum_120 = 0
    best_test_accu_sum_240 = 0
    best_test_accu_sum_360 = 0
    best_test_accu_sum_480 = 0
    best_avg_loss = float("inf") # sys.float_info.max # 1000000
    epoch_70 = None
    epoch_90 = None
    epoch_95 = None
    epoch_99 = None

    if args.stride == 1: multiplier = 6
    if args.stride == 2: multiplier = 3
    if args.stride == 3: multiplier = 2
    if args.stride == 4: multiplier = 1  # (Should be 1.5...)

    #sample_time_steps = int(args.sample_miliseconds / 10)
    loss_begin = round(args.crop_begin / (10 * args.stride))
    loss_end = -round(args.crop_end / (10 * args.stride)) or None

    print("LOSS BEGIN:", loss_begin)
    print("LOSS END:", loss_end)
    ########

    if args.cuda:
        model = torch.nn.DataParallel(model).cuda()

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(start_epoch, args.epochs):
        ########
        #scheduler.step()
        optim_state_now = optimizer.state_dict()
        print('\nLEARNING RATE: {lr:.6f}'.format(lr=optim_state_now['param_groups'][0]['lr']))
        class_accu.reset()
        class_accu_sum.reset()
        class_accu_sum_120.reset()
        class_accu_sum_240.reset()
        class_accu_sum_360.reset()
        class_accu_sum_480.reset()
        ########
        model.train()
        end = time.time()
        for i, (data) in enumerate(train_loader, start=start_iter):
            if i == len(train_loader):
                break

            ########
            """
            inputs, targets, input_percentages, target_sizes = data
            """
            inputs, targets, input_percentages, target_sizes, speaker_labels = data
            ########

            # measure data loading time
            data_time.update(time.time() - end)
            inputs = Variable(inputs, requires_grad=False)

            ########
            """
            target_sizes = Variable(target_sizes, requires_grad=False)
            targets = Variable(targets, requires_grad=False)
            """
            speaker_labels = Variable(speaker_labels, requires_grad=False)
            ########

            if args.cuda:
                inputs = inputs.cuda()

            ########
            """
            out = model(inputs)
            """
            #temp_random = random.randint(0, (inputs.size(3)-1)-sample_time_steps)
            #print("INPUT", inputs[...,temp_random:temp_random+sample_time_steps].size(),temp_random, temp_random+sample_time_steps)
            #out = model(inputs[...,temp_random:temp_random+sample_time_steps])
            #print("OUTPUT", out.size())
            start = random.randint(0, int((inputs.size(3)-1)*(1-args.sample_proportion)))
            print("INPUT", inputs.size(3), inputs[...,start:start+int((inputs.size(3))*(args.sample_proportion))].size(),start, start+int((inputs.size(3))*(args.sample_proportion)))
            out = model(inputs[...,start:start+int((inputs.size(3))*(args.sample_proportion))])
            print("OUTPUT", out.size())
            ########

            out = out.transpose(0, 1)  # TxNxH

            ########
            speaker_labels = speaker_labels.cuda(async=True).long()
            # Prints the output of the model in a sequence of probabilities of char for each audio...
            torch.set_printoptions(profile="full")
            ####print("OUT: " + str(out.size()), "SPEAKER LABELS:" + str(speaker_labels.size()), "INPUT PERCENTAGES MEAN: " + str(input_percentages.mean()))
            """
            seq_length = out.size(0)
            sizes = Variable(input_percentages.mul_(int(seq_length)).int(), requires_grad=False)

            loss = criterion(out, targets, sizes, target_sizes)
            """
            #print(out[:,:,0])
            #print("SPEAKER LABELS: " + str(speaker_labels))
            #print(out[0][0])
            #softmax_output = F.softmax(out).data # This DOES NOT what I want...
            #softmax_output_alt = flex_softmax(out, axis=2).data # This is FINE!!! <<<===
            #print(softmax_output[0][0])
            #print(softmax_output_alt[0][0])
            ####new_out = torch.sum(out, 0)
            ####new_out = torch.sum(out[20:], 0)
            #print(out.size())
            #print(new_out.size())
            #print(out[-1].size())
            ########

            ########
            if args.loss_type == "reg":
                #loss_out = out[-1]; loss_speaker_labels = speaker_labels
                loss_out = out[round(out.size(0)/2)]; loss_speaker_labels = speaker_labels
                #print("LOSS TYPE = REGULAR")
            elif args.loss_type == "sum":
                loss_out = torch.sum(out[loss_begin:loss_end], 0); loss_speaker_labels = speaker_labels
                #print("LOSS TYPE = SUM")
            elif args.loss_type == "full":
                # Don't know if is ok!!! Don't use!!! => loss_out = out.contiguous().view(-1,48); loss_speaker_labels = speaker_labels.repeat(out.size(0)) #speaker_labels = speaker_labels.expand(20, out.size(0))
                # Don't know if is ok!!! Don't use!!! => loss_out = out.contiguous().view(-1,48); loss_speaker_labels = speaker_labels.repeat(1, out.size(0)).squeeze() #speaker_labels = speaker_labels.expand(20, out.size(0))
                loss_out = out.contiguous()[loss_begin:loss_end].view(-1,48); loss_speaker_labels = speaker_labels.repeat(out.size(0),1)[loss_begin:loss_end].view(-1) #speaker_labels = speaker_labels.expand(20, out.size(0))
                #print("LOSS TYPE = FULL")
            print("LOSS_OUT: " + str(loss_out.size()), "SPEAKER LABELS:" + str(loss_speaker_labels.size()))
            loss = criterion(loss_out, loss_speaker_labels)
            ########

            loss = loss / inputs.size(0)  # average the loss by minibatch

            loss_sum = loss.data.sum()
            inf = float("inf")
            if loss_sum == inf or loss_sum == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0
            else:
                loss_value = loss.data[0]

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            ########
            #if args.stride == 1: multiplier = 6
            #if args.stride == 2: multiplier = 3
            #if args.stride == 3: multiplier = 2
            #if args.stride == 4: multiplier = 1 #(Should be 1.5...)
            #if args.stride == 5: multiplier = 1 #(Should be 1.25...)

            class_accu.add(out[round(out.size(0)/2)].data, speaker_labels.data)
            class_accu_sum.add(torch.sum(out, 0).data, speaker_labels.data)

            #class_accu_sum_120.add(torch.sum(out[1*multiplier:-1*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_240.add(torch.sum(out[2*multiplier:-2*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_360.add(torch.sum(out[3*multiplier:-3*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_480.add(torch.sum(out[4*multiplier:-4*multiplier], 0).data, speaker_labels.data)
            ####class_accu_sum_120.add(torch.sum(out[round(out.size(0)/2)-1*multiplier:round(out.size(0)/2)+1*multiplier], 0).data, speaker_labels.data)
            ####class_accu_sum_240.add(torch.sum(out[round(out.size(0)/2)-2*multiplier:round(out.size(0)/2)+2*multiplier], 0).data, speaker_labels.data)
            ####class_accu_sum_360.add(torch.sum(out[round(out.size(0)/2)-3*multiplier:round(out.size(0)/2)+3*multiplier], 0).data, speaker_labels.data)
            ####class_accu_sum_480.add(torch.sum(out[round(out.size(0)/2)-4*multiplier:round(out.size(0)/2)+4*multiplier], 0).data, speaker_labels.data)

            #accu_out3 = torch.sum(flex_softmax(out[20:], axis=2), 0)
            #print(classaccu.value()[0], classaccu.value()[1])
            # Cross Entropy Loss for a Sequence (Time Series) of Output?
            #output = output.view(-1,29)
            #target = target.view(-1)
            #criterion = nn.CrossEntropyLoss()
            #loss = criterion(output,target)
            ########

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm)
            # SGD step
            optimizer.step()

            if args.cuda:
                torch.cuda.synchronize()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if not args.silent:

                ########
                """
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                    (epoch + 1), (i + 1), len(train_loader), batch_time=batch_time,
                    data_time=data_time, loss=losses))
                """
                print('Epoch: [{0}][{1}/{2}]\t'
                      # 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      # 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'CAR {car:.3f}\t'
                      'CAR_SUM {car_sum:.3f}\t'
                      #'CAR_SUM_120 {car_sum_120:.3f}\t'
                      #'CAR_SUM_240 {car_sum_240:.3f}\t'
                      #'CAR_SUM_360 {car_sum_360:.3f}\t'
                      #'CAR_SUM_480 {car_sum_480:.3f}\t'
                      .format((epoch + 1), (i + 1), len(train_loader), batch_time=batch_time, data_time=data_time,
                              loss=losses, car=class_accu.value()[0], car_sum=class_accu_sum.value()[0],
                      #        car_sum_240=class_accu_sum_240.value()[0], car_sum_120=class_accu_sum_120.value()[0],
                      #        car_sum_360=class_accu_sum_360.value()[0], car_sum_480=class_accu_sum_480.value()[0]
                              )
                      )
                ########

            ########
            """
            if args.checkpoint_per_batch > 0 and i > 0 and (i + 1) % args.checkpoint_per_batch == 0:
                file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth.tar' % (save_folder, epoch + 1, i + 1)
                print("Saving checkpoint model to %s" % file_path)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i,
                                                loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss),
                           file_path)
            """
            ########

            del loss
            del out

            ########
            del loss_out
            del speaker_labels
            del loss_speaker_labels
            ########

        avg_loss /= len(train_loader)

        ########
        """
        print('Training Summary Epoch: [{0}]\t'
              'Average Loss {loss:.3f}\t'.format(
            epoch + 1, loss=avg_loss))
        """

        if (best_avg_loss > avg_loss): best_avg_loss = avg_loss

        print("\nCURRENT EPOCH TRAINING RESULTS:\t", class_accu.value()[0], "\t", class_accu_sum.value()[0],"\t",
              #class_accu_sum_120.value()[0], class_accu_sum_240.value()[0], class_accu_sum_360.value()[0], "\t", class_accu_sum_480.value()[0], "\n"
              )

        if (best_train_accu < class_accu.value()[0]): best_train_accu = class_accu.value()[0]
        if (best_train_accu_sum < class_accu_sum.value()[0]): best_train_accu_sum = class_accu_sum.value()[0]
        #if (best_train_accu_sum_120 < class_accu_sum_120.value()[0]): best_train_accu_sum_120 = class_accu_sum_120.value()[0]
        #if (best_train_accu_sum_240 < class_accu_sum_240.value()[0]): best_train_accu_sum_240 = class_accu_sum_240.value()[0]
        #if (best_train_accu_sum_360 < class_accu_sum_360.value()[0]): best_train_accu_sum_360 = class_accu_sum_360.value()[0]
        #if (best_train_accu_sum_480 < class_accu_sum_480.value()[0]): best_train_accu_sum_480 = class_accu_sum_480.value()[0]

        get_70 = ((class_accu.value()[0] > 70) or (class_accu_sum.value()[0] > 70)
                  #or (class_accu_sum_120.value()[0] > 70) or (class_accu_sum_240.value()[0] > 70)
                  #or (class_accu_sum_360.value()[0] > 70) or (class_accu_sum_480.value()[0] > 70)
                  )
        if ((epoch_70 is None) and (get_70 == True)): epoch_70 = epoch + 1
        get_90 = ((class_accu.value()[0] > 90) or (class_accu_sum.value()[0] > 90)
                  #or (class_accu_sum_120.value()[0] > 90) or (class_accu_sum_240.value()[0] > 90)
                  #or (class_accu_sum_360.value()[0] > 90) or (class_accu_sum_480.value()[0] > 90)
                  )
        if ((epoch_90 is None) and (get_90 == True)): epoch_90 = epoch + 1
        get_95 = ((class_accu.value()[0] > 95) or (class_accu_sum.value()[0] > 95)
                  #or (class_accu_sum_120.value()[0] > 95) or (class_accu_sum_240.value()[0] > 95)
                  #or (class_accu_sum_360.value()[0] > 95) or (class_accu_sum_480.value()[0] > 95)
                  )
        if ((epoch_95 is None) and (get_95 == True)): epoch_95 = epoch + 1
        get_99 = ((class_accu.value()[0] > 99) or (class_accu_sum.value()[0] > 99)
                  #or (class_accu_sum_120.value()[0] > 99) or (class_accu_sum_240.value()[0] > 99)
                  #or (class_accu_sum_360.value()[0] > 99) or (class_accu_sum_480.value()[0] > 99)
                  )
        if ((epoch_99 is None) and (get_99 == True)): epoch_99 = epoch + 1
        ########

        start_iter = 0  # Reset start iteration for next epoch
        total_cer, total_wer = 0, 0
        model.eval()

        ########
        class_accu.reset()
        class_accu_sum.reset()
        class_accu_sum_120.reset()
        class_accu_sum_240.reset()
        class_accu_sum_360.reset()
        class_accu_sum_480.reset()
        ########

        for i, (data) in enumerate(test_loader):  # test

            ########
            """
            inputs, targets, input_percentages, target_sizes = data
            """
            inputs, targets, input_percentages, target_sizes, speaker_labels = data
            ########

            inputs = Variable(inputs, volatile=True)

            ########
            speaker_labels = Variable(speaker_labels, requires_grad=False)
            speaker_labels = speaker_labels.cuda(async=True).long()
            """
            # unflatten targets
            split_targets = []
            offset = 0
            for size in target_sizes:
                split_targets.append(targets[offset:offset + size])
                offset += size
            """
            ########

            if args.cuda:
                inputs = inputs.cuda()

            out = model(inputs)
            out = out.transpose(0, 1)  # TxNxH

            ########
            speaker_labels = speaker_labels.cuda(async=True).long()
            # Prints the output of the model in a sequence of probabilities of char for each audio...
            torch.set_printoptions(profile="full")
            ########print("OUT: " + str(out.size()), "NEW OUT:" + str(new_out.size()), "SPEAKER LABELS:" + str(speaker_labels.size()), "INPUT PERCENTAGES MEAN: " + str(input_percentages.mean()))
            #print(out[:,:,0])
            #print("SPEAKER LABELS: " + str(speaker_labels))
            #print(out[0][0])
            #softmax_output = F.softmax(out).data # This DOES NOT what I want...
            #softmax_output_alt = flex_softmax(out, axis=2).data # This is FINE!!! <<<===
            #print(softmax_output[0][0])
            #print(softmax_output_alt[0][0])
            ########

            ########
            #if args.stride == 1: multiplier = 6
            #if args.stride == 2: multiplier = 3
            #if args.stride == 3: multiplier = 2
            #if args.stride == 4: multiplier = 1 #(Should be 1.5...)
            #if args.stride == 5: multiplier = 1 #(Should be 1.25...)

            class_accu.add(out[round(out.size(0)/2)].data, speaker_labels.data)
            class_accu_sum.add(torch.sum(out, 0).data, speaker_labels.data)

            class_accu_sum_120.add(torch.sum(out[1*multiplier:-1*multiplier], 0).data, speaker_labels.data)
            class_accu_sum_240.add(torch.sum(out[2*multiplier:-2*multiplier], 0).data, speaker_labels.data)
            class_accu_sum_360.add(torch.sum(out[3*multiplier:-3*multiplier], 0).data, speaker_labels.data)
            class_accu_sum_480.add(torch.sum(out[4*multiplier:-4*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_120.add(torch.sum(out[round(out.size(0)/2)-1*multiplier:round(out.size(0)/2)+1*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_240.add(torch.sum(out[round(out.size(0)/2)-2*multiplier:round(out.size(0)/2)+2*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_360.add(torch.sum(out[round(out.size(0)/2)-3*multiplier:round(out.size(0)/2)+3*multiplier], 0).data, speaker_labels.data)
            #class_accu_sum_480.add(torch.sum(out[round(out.size(0)/2)-4*multiplier:round(out.size(0)/2)+4*multiplier], 0).data, speaker_labels.data)

            #accu_out3 = torch.sum(flex_softmax(out[20:], axis=2), 0)
            #print(classaccu.value()[0], classaccu.value()[1])
            # Cross Entropy Loss for a Sequence (Time Series) of Output?
            #output = output.view(-1,29)
            #target = target.view(-1)
            #criterion = nn.CrossEntropyLoss()
            #loss = criterion(output,target)

            print('Validation Summary Epoch: [{0}]\t'
                  'CAR {car:.3f}\t'
                  'CAR_SUM {car_sum:.3f}\t'
                  'CAR_SUM_120 {car_sum_120:.3f}\t'
                  'CAR_SUM_240 {car_sum_240:.3f}\t'
                  'CAR_SUM_360 {car_sum_360:.3f}\t'
                  'CAR_SUM_480 {car_sum_480:.3f}\t'
                  .format(epoch + 1, car=class_accu.value()[0], car_sum=class_accu_sum.value()[0],
                          car_sum_240=class_accu_sum_240.value()[0], car_sum_120=class_accu_sum_120.value()[0],
                          car_sum_360=class_accu_sum_360.value()[0], car_sum_480=class_accu_sum_480.value()[0]
                          )
                  )
            """
            seq_length = out.size(0)
            sizes = input_percentages.mul_(int(seq_length)).int()            
            decoded_output = decoder.decode(out.data, sizes)
            target_strings = decoder.process_strings(decoder.convert_to_strings(split_targets))
            wer, cer = 0, 0
            for x in range(len(target_strings)):
                wer += decoder.wer(decoded_output[x], target_strings[x]) / float(len(target_strings[x].split()))
                cer += decoder.cer(decoded_output[x], target_strings[x]) / float(len(target_strings[x]))
            total_cer += cer
            total_wer += wer
            """
            ########

            if args.cuda:
                torch.cuda.synchronize()
            del out

        ########
        """
        wer = total_wer / len(test_loader.dataset)
        cer = total_cer / len(test_loader.dataset)
        wer *= 100
        cer *= 100
        loss_results[epoch] = avg_loss
        wer_results[epoch] = wer
        cer_results[epoch] = cer
        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(
            epoch + 1, wer=wer, cer=cer))
        """
        ########

        ########
        print("\nCURRENT EPOCH TEST RESULTS:\t", class_accu.value()[0], "\t", class_accu_sum.value()[0],
              "\t", class_accu_sum_120.value()[0], "\t", class_accu_sum_240.value()[0],
              "\t", class_accu_sum_360.value()[0], "\t", class_accu_sum_480.value()[0], "\n")

        if (best_test_accu < class_accu.value()[0]): best_test_accu = class_accu.value()[0]
        if (best_test_accu_sum < class_accu_sum.value()[0]): best_test_accu_sum = class_accu_sum.value()[0]
        if (best_test_accu_sum_120 < class_accu_sum_120.value()[0]): best_test_accu_sum_120 = class_accu_sum_120.value()[0]
        if (best_test_accu_sum_240 < class_accu_sum_240.value()[0]): best_test_accu_sum_240 = class_accu_sum_240.value()[0]
        if (best_test_accu_sum_360 < class_accu_sum_360.value()[0]): best_test_accu_sum_360 = class_accu_sum_360.value()[0]
        if (best_test_accu_sum_480 < class_accu_sum_480.value()[0]): best_test_accu_sum_480 = class_accu_sum_480.value()[0]

        print("\nBEST EPOCH TRAINING RESULTS:\t", best_train_accu, "\t", best_train_accu_sum,
              "\t", best_train_accu_sum_120, "\t", best_train_accu_sum_240,
              "\t", best_train_accu_sum_360, "\t", best_train_accu_sum_480)
        print("\nBEST EPOCH TEST RESULTS:\t", best_test_accu, "\t", best_test_accu_sum,
              "\t", best_test_accu_sum_120, "\t", best_test_accu_sum_240,
              "\t", best_test_accu_sum_360, "\t", best_test_accu_sum_480)
        print("\nEPOCHS 70%, 90%, 95%, 99%:\t", epoch_70, "\t", epoch_90, "\t", epoch_95, "\t", epoch_99)
        print("\nBEST AVERAGE LOSS:\t", best_avg_loss, "\n")
        ########

        ########
        """
        if args.visdom:
            # epoch += 1
            x_axis = epochs[0:epoch + 1]
            y_axis = [loss_results[0:epoch + 1], wer_results[0:epoch + 1], cer_results[0:epoch + 1]]
            for x in range(len(viz_windows)):
                if viz_windows[x] is None:
                    viz_windows[x] = viz.line(
                        X=x_axis,
                        Y=y_axis[x],
                        opts=opts[x],
                    )
                else:
                    viz.line(
                        X=x_axis,
                        Y=y_axis[x],
                        win=viz_windows[x],
                        update='replace',
                    )
        if args.tensorboard:
            info = {
                'Avg Train Loss': avg_loss,
                'Avg WER': wer,
                'Avg CER': cer
            }
            for tag, val in info.items():
                logger.scalar_summary(tag, val, epoch + 1)
            if args.log_params:
                for tag, value in model.named_parameters():
                    tag = tag.replace('.', '/')
                    logger.histo_summary(tag, to_np(value), epoch + 1)
                    logger.histo_summary(tag + '/grad', to_np(value.grad), epoch + 1)
        if args.checkpoint:
            file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1)
            torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
                                            wer_results=wer_results, cer_results=cer_results),
                       file_path)

        # anneal lr
        optim_state = optimizer.state_dict()
        optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal
        optimizer.load_state_dict(optim_state)
        print('Learning rate annealed to: {lr:.6f}'.format(lr=optim_state['param_groups'][0]['lr']))

        if best_wer is None or best_wer > wer:
            print("Found better validated model, saving to %s" % args.model_path)
            torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
                                            wer_results=wer_results, cer_results=cer_results)
                       , args.model_path)
            best_wer = wer
        """
        ########

        avg_loss = 0
        if not args.no_bucketing and epoch == 0:
            print("Switching to bucketing sampler for following epochs")
            train_dataset = SpectrogramDatasetWithLength(audio_conf=audio_conf, manifest_filepath=args.train_manifest,
                                                         labels=labels,
                                                         normalize=True, augment=args.augment)
            sampler = BucketingSampler(train_dataset)
            train_loader.sampler = sampler
예제 #6
0
                          window_stride=args.window_stride,
                          window=args.window,
                          noise_dir=args.noise_dir,
                          noise_prob=args.noise_prob,
                          noise_levels=(args.noise_min, args.noise_max))
    else:
        print("Must load model!")
        exit()

    train_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                       manifest_filepath=args.train_manifest,
                                       labels=labels,
                                       normalize=True,
                                       augment=False)
    train_sampler = BucketingSampler(train_dataset, batch_size=1)
    train_loader = AudioDataLoader(train_dataset, batch_sampler=train_sampler)

    # get the previous output f* & have modified the forward function
    with torch.no_grad():
        for i, (data) in enumerate(train_loader):  # just once
            # inputs: Nx1xKxT
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            inputs = inputs.to(device)
            print('input size is:', inputs.size())
            # initial M_Noise model
            M_model = M_Noise_Deepspeech(package, inputs.size())
            M_model.to(device)
            # no update to these parameters
            for para in M_model.deepspeech_net.parameters():
                para.requires_grad = False
예제 #7
0
    if not args.distributed:
        train_sampler = BucketingSampler(train_dataset, batch_size=batch_size)
        val_sampler = BucketingSampler(val_dataset, batch_size=batch_size)
    else:
        train_sampler = DistributedBucketingSampler(
            train_dataset,
            batch_size=batch_size,
            num_replicas=args.world_size,
            rank=args.rank)
        val_sampler = DistributedBucketingSampler(val_dataset,
                                                  batch_size=batch_size,
                                                  num_replicas=args.world_size,
                                                  rank=args.rank)

    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers,
                                   batch_sampler=train_sampler)
    val_loader = AudioDataLoader(val_dataset,
                                 num_workers=args.num_workers,
                                 batch_sampler=val_sampler)

    if (shuffle and start_epoch != 0) or not sorta_grad:
        logger.info("Shuffling batches for the following epochs")
        train_sampler.shuffle(start_epoch)
    val_sampler.shuffle(1)

    # Optimizer.
    optim_name = train_conf['optimizer']
    optim_conf = config[optim_name]
    parameters = model.parameters()
    learning_rate = train_conf.getfloat('learning_rate')
예제 #8
0
    val_manifest = "data/dev-clean_manifest.csv"
    device = "cuda"

    model_path = args.model_path
    package = torch.load(model_path, map_location=lambda storage, loc: storage)
    model = DeepSpeech.load_model_package(package)
    labels = model.labels
    audio_conf = model.audio_conf
    model.to(device)

    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=val_manifest,
                                      labels=labels,
                                      normalize=True,
                                      speed_volume_perturb=False,
                                      spec_augment=False)
    test_loader = AudioDataLoader(test_dataset, batch_size=20, num_workers=4)

    decoder = GreedyDecoder(model.labels, blank_index=model.labels.index('_'))
    target_decoder = GreedyDecoder(model.labels,
                                   blank_index=model.labels.index('_'))
    with torch.no_grad():
        evaluate(test_loader,
                 device,
                 model,
                 decoder,
                 target_decoder,
                 verbose=True)
    print("made it this far")
예제 #9
0
def main():
    args = parser.parse_args()
    save_folder = args.save_folder

    loss_results, cer_results, wer_results = torch.Tensor(
        args.epochs), torch.Tensor(args.epochs), torch.Tensor(args.epochs)
    best_wer = None
    if args.visdom:
        from visdom import Visdom
        viz = Visdom()

        opts = [
            dict(title=args.visdom_id + ' Loss', ylabel='Loss',
                 xlabel='Epoch'),
            dict(title=args.visdom_id + ' WER', ylabel='WER', xlabel='Epoch'),
            dict(title=args.visdom_id + ' CER', ylabel='CER', xlabel='Epoch')
        ]

        viz_windows = [None, None, None]
        epochs = torch.arange(1, args.epochs + 1)
    if args.tensorboard:
        from logger import TensorBoardLogger
        try:
            os.makedirs(args.log_dir)
        except OSError as e:
            if e.errno == errno.EEXIST:
                print('Directory already exists.')
                for file in os.listdir(args.log_dir):
                    file_path = os.path.join(args.log_dir, file)
                    try:
                        if os.path.isfile(file_path):
                            os.unlink(file_path)
                    except Exception as e:
                        raise
            else:
                raise
        logger = TensorBoardLogger(args.log_dir)

    try:
        os.makedirs(save_folder)
    except OSError as e:
        if e.errno == errno.EEXIST:
            print('Directory already exists.')
        else:
            raise
    criterion = CTCLoss()

    with open(args.labels_path) as label_file:
        labels = str(''.join(json.load(label_file)))
    audio_conf = dict(sample_rate=args.sample_rate,
                      window_size=args.window_size,
                      window_stride=args.window_stride,
                      window=args.window,
                      noise_dir=args.noise_dir,
                      noise_prob=args.noise_prob,
                      noise_levels=(args.noise_min, args.noise_max))

    train_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                       manifest_filepath=args.train_manifest,
                                       labels=labels,
                                       normalize=True,
                                       augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=args.val_manifest,
                                      labels=labels,
                                      normalize=True,
                                      augment=False)
    train_loader = AudioDataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    rnn_type = args.rnn_type.lower()
    assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
    model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                       nb_layers=args.hidden_layers,
                       labels=labels,
                       rnn_type=supported_rnns[rnn_type],
                       audio_conf=audio_conf,
                       bidirectional=True)
    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters,
                                lr=args.lr,
                                momentum=args.momentum,
                                nesterov=True)
    decoder = GreedyDecoder(labels)

    if args.continue_from:
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from)
        model.load_state_dict(package['state_dict'])
        optimizer.load_state_dict(package['optim_dict'])
        start_epoch = int(package.get(
            'epoch', 1)) - 1  # Python index start at 0 for training
        start_iter = package.get('iteration', None)
        if start_iter is None:
            start_epoch += 1  # Assume that we saved a model after an epoch finished, so start at the next epoch.
            start_iter = 0
        else:
            start_iter += 1
        avg_loss = int(package.get('avg_loss', 0))
        loss_results, cer_results, wer_results = package[
            'loss_results'], package['cer_results'], package['wer_results']
        if args.visdom and \
                        package['loss_results'] is not None and start_epoch > 0:  # Add previous scores to visdom graph
            x_axis = epochs[0:start_epoch]
            y_axis = [
                loss_results[0:start_epoch], wer_results[0:start_epoch],
                cer_results[0:start_epoch]
            ]
            for x in range(len(viz_windows)):
                viz_windows[x] = viz.line(
                    X=x_axis,
                    Y=y_axis[x],
                    opts=opts[x],
                )
        if args.tensorboard and \
                        package['loss_results'] is not None and start_epoch > 0:  # Previous scores to tensorboard logs
            for i in range(start_epoch):
                info = {
                    'Avg Train Loss': loss_results[i],
                    'Avg WER': wer_results[i],
                    'Avg CER': cer_results[i]
                }
                for tag, val in info.items():
                    logger.scalar_summary(tag, val, i + 1)
        if not args.no_bucketing and epoch != 0:
            print("Using bucketing sampler for the following epochs")
            train_dataset = SpectrogramDatasetWithLength(
                audio_conf=audio_conf,
                manifest_filepath=args.train_manifest,
                labels=labels,
                normalize=True,
                augment=args.augment)
            sampler = BucketingSampler(train_dataset)
            train_loader.sampler = sampler
    else:
        avg_loss = 0
        start_epoch = 0
        start_iter = 0
    if args.cuda:
        model = torch.nn.DataParallel(model).cuda()

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(start_epoch, args.epochs):
        model.train()
        end = time.time()
        for i, (data) in enumerate(train_loader, start=start_iter):
            if i == len(train_loader):
                break
            inputs, targets, input_percentages, target_sizes = data
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = Variable(inputs, requires_grad=False)
            target_sizes = Variable(target_sizes, requires_grad=False)
            targets = Variable(targets, requires_grad=False)

            if args.cuda:
                inputs = inputs.cuda()

            out = model(inputs)
            out = out.transpose(0, 1)  # TxNxH

            seq_length = out.size(0)
            sizes = Variable(input_percentages.mul_(int(seq_length)).int(),
                             requires_grad=False)

            loss = criterion(out, targets, sizes, target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch

            loss_sum = loss.data.sum()
            inf = float("inf")
            if loss_sum == inf or loss_sum == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0
            else:
                loss_value = loss.data[0]

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm)
            # SGD step
            optimizer.step()

            if args.cuda:
                torch.cuda.synchronize()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if not args.silent:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                          (epoch + 1), (i + 1),
                          len(train_loader),
                          batch_time=batch_time,
                          data_time=data_time,
                          loss=losses))
            if args.checkpoint_per_batch > 0 and i > 0 and (
                    i + 1) % args.checkpoint_per_batch == 0:
                file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth.tar' % (
                    save_folder, epoch + 1, i + 1)
                print("Saving checkpoint model to %s" % file_path)
                torch.save(
                    DeepSpeech.serialize(model,
                                         optimizer=optimizer,
                                         epoch=epoch,
                                         iteration=i,
                                         loss_results=loss_results,
                                         wer_results=wer_results,
                                         cer_results=cer_results,
                                         avg_loss=avg_loss), file_path)
            del loss
            del out
        avg_loss /= len(train_loader)

        print('Training Summary Epoch: [{0}]\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1, loss=avg_loss))

        start_iter = 0  # Reset start iteration for next epoch
        total_cer, total_wer = 0, 0
        model.eval()
        for i, (data) in enumerate(test_loader):  # test
            inputs, targets, input_percentages, target_sizes = data

            inputs = Variable(inputs, volatile=True)

            # unflatten targets
            split_targets = []
            offset = 0
            for size in target_sizes:
                split_targets.append(targets[offset:offset + size])
                offset += size

            if args.cuda:
                inputs = inputs.cuda()

            out = model(inputs)
            out = out.transpose(0, 1)  # TxNxH
            seq_length = out.size(0)
            sizes = input_percentages.mul_(int(seq_length)).int()

            decoded_output = decoder.decode(out.data, sizes)
            target_strings = decoder.process_strings(
                decoder.convert_to_strings(split_targets))
            wer, cer = 0, 0
            for x in range(len(target_strings)):
                wer += decoder.wer(decoded_output[x],
                                   target_strings[x]) / float(
                                       len(target_strings[x].split()))
                cer += decoder.cer(decoded_output[x],
                                   target_strings[x]) / float(
                                       len(target_strings[x]))
            total_cer += cer
            total_wer += wer

            if args.cuda:
                torch.cuda.synchronize()
            del out
        wer = total_wer / len(test_loader.dataset)
        cer = total_cer / len(test_loader.dataset)
        wer *= 100
        cer *= 100
        loss_results[epoch] = avg_loss
        wer_results[epoch] = wer
        cer_results[epoch] = cer
        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

        if args.visdom:
            # epoch += 1
            x_axis = epochs[0:epoch + 1]
            y_axis = [
                loss_results[0:epoch + 1], wer_results[0:epoch + 1],
                cer_results[0:epoch + 1]
            ]
            for x in range(len(viz_windows)):
                if viz_windows[x] is None:
                    viz_windows[x] = viz.line(
                        X=x_axis,
                        Y=y_axis[x],
                        opts=opts[x],
                    )
                else:
                    viz.line(
                        X=x_axis,
                        Y=y_axis[x],
                        win=viz_windows[x],
                        update='replace',
                    )
        if args.tensorboard:
            info = {'Avg Train Loss': avg_loss, 'Avg WER': wer, 'Avg CER': cer}
            for tag, val in info.items():
                logger.scalar_summary(tag, val, epoch + 1)
            if args.log_params:
                for tag, value in model.named_parameters():
                    tag = tag.replace('.', '/')
                    logger.histo_summary(tag, to_np(value), epoch + 1)
                    logger.histo_summary(tag + '/grad', to_np(value.grad),
                                         epoch + 1)
        if args.checkpoint:
            file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch + 1)
            torch.save(
                DeepSpeech.serialize(model,
                                     optimizer=optimizer,
                                     epoch=epoch,
                                     loss_results=loss_results,
                                     wer_results=wer_results,
                                     cer_results=cer_results), file_path)
        # anneal lr
        optim_state = optimizer.state_dict()
        optim_state['param_groups'][0][
            'lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal
        optimizer.load_state_dict(optim_state)
        print('Learning rate annealed to: {lr:.6f}'.format(
            lr=optim_state['param_groups'][0]['lr']))

        if best_wer is None or best_wer > wer:
            print("Found better validated model, saving to %s" %
                  args.model_path)
            torch.save(
                DeepSpeech.serialize(model,
                                     optimizer=optimizer,
                                     epoch=epoch,
                                     loss_results=loss_results,
                                     wer_results=wer_results,
                                     cer_results=cer_results), args.model_path)
            best_wer = wer

        avg_loss = 0
        if not args.no_bucketing and epoch == 0:
            print("Switching to bucketing sampler for following epochs")
            train_dataset = SpectrogramDatasetWithLength(
                audio_conf=audio_conf,
                manifest_filepath=args.train_manifest,
                labels=labels,
                normalize=True,
                augment=args.augment)
            sampler = BucketingSampler(train_dataset)
            train_loader.sampler = sampler
                                            batch_size=args.batch_size)
     train_sampler_adv = BucketingSampler(train_dataset_adv,
                                          batch_size=args.batch_size)
 else:
     train_sampler_clean = DistributedBucketingSampler(
         train_dataset_clean,
         batch_size=args.batch_size,
         num_replicas=args.world_size,
         rank=args.rank)
     train_sampler_adv = DistributedBucketingSampler(
         train_dataset_adv,
         batch_size=args.batch_size,
         num_replicas=args.world_size,
         rank=args.rank)
 train_loader_clean = AudioDataLoader(train_dataset_clean,
                                      num_workers=args.num_workers,
                                      batch_sampler=train_sampler_clean)
 train_loader_adv = AudioDataLoader(train_dataset_adv,
                                    num_workers=args.num_workers,
                                    batch_sampler=train_sampler_adv)
 test_loader = AudioDataLoader(test_dataset,
                               batch_size=args.batch_size,
                               num_workers=args.num_workers)
 '''
 if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
     print("Shuffling batches for the following epochs")
     train_sampler.shuffle(start_epoch)
 '''
 model = model.to(device)
 denoiser = denoiser.to(device)
 if args.mixed_precision:
예제 #11
0
    log_file = f'{save_folder}/{datetime.now().strftime("%Y%m%d-%H%M%S")}_{test_job}'
    logger = config_logger('test', log_file=log_file, console_level='ERROR')

    torch.set_grad_enabled(False)
    model, _ = load_model(args.model_path)
    device = torch.device("cuda" if args.cuda else "cpu")
    label_decoder = LabelDecoder(model.labels)
    model.eval()
    model = model.to(device)

    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=args.test_manifest,
                                      labels=model.labels)
    test_sampler = BucketingSampler(test_dataset, batch_size=args.batch_size)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_sampler=test_sampler,
                                  num_workers=args.num_workers)
    test_sampler.shuffle(1)

    total_wer, total_cer, total_ler, num_words, num_chars, num_labels = 0, 0, 0, 0, 0, 0
    output_data = []

    for i, (data) in tqdm(enumerate(test_loader),
                          total=len(test_loader),
                          ascii=True):
        inputs, targets, input_sizes, target_sizes, filenames = data
        inputs = inputs.to(device)
        input_sizes = input_sizes.to(device)
        outputs = model.transcribe(inputs, input_sizes)

        for i, target in enumerate(targets):
예제 #12
0
    def train(self, **kwargs):
        """
        Run optimization to train the model.

        Parameters
        ----------


        """
        world_size = kwargs.pop('world_size', 1)
        gpu_rank = kwargs.pop('gpu_rank', 0)
        rank = kwargs.pop('rank', 0)
        dist_backend = kwargs.pop('dist_backend', 'nccl')
        dist_url = kwargs.pop('dist_url', None)

        os.environ['MASTER_ADDR'] = '127.0.0.1'
        os.environ['MASTER_PORT'] = '1234'

        main_proc = True
        self.distributed = world_size > 1

        if self.distributed:
            if self.gpu_rank:
                torch.cuda.set_device(int(gpu_rank))
            dist.init_process_group(backend=dist_backend,
                                    init_method=dist_url,
                                    world_size=world_size,
                                    rank=rank)
            print('Initiated process group')
            main_proc = rank == 0  # Only the first proc should save models

        if main_proc and self.tensorboard:
            tensorboard_logger = TensorBoardLogger(self.id,
                                                   self.log_dir,
                                                   self.log_params,
                                                   comment=self.sufix)

        if self.distributed:
            train_sampler = DistributedBucketingSampler(
                self.data_train,
                batch_size=self.batch_size,
                num_replicas=world_size,
                rank=rank)
        else:
            if self.sampler_type == 'bucketing':
                train_sampler = BucketingSampler(self.data_train,
                                                 batch_size=self.batch_size,
                                                 shuffle=True)
            if self.sampler_type == 'random':
                train_sampler = RandomBucketingSampler(
                    self.data_train, batch_size=self.batch_size)

        print("Shuffling batches for the following epochs..")
        train_sampler.shuffle(self.start_epoch)

        train_loader = AudioDataLoader(self.data_train,
                                       num_workers=self.num_workers,
                                       batch_sampler=train_sampler)
        val_loader = AudioDataLoader(self.data_val,
                                     batch_size=self.batch_size_val,
                                     num_workers=self.num_workers,
                                     shuffle=True)

        if self.tensorboard and self.generate_graph:  # TO DO get some audios also
            with torch.no_grad():
                inputs, targets, input_percentages, target_sizes = next(
                    iter(train_loader))
                input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
                tensorboard_logger.add_image(inputs,
                                             input_sizes,
                                             targets,
                                             network=self.model)

        self.model = self.model.to(self.device)
        parameters = self.model.parameters()

        if self.update_rule == 'adam':
            optimizer = torch.optim.Adam(parameters,
                                         lr=self.lr,
                                         weight_decay=self.reg)
        if self.update_rule == 'sgd':
            optimizer = torch.optim.SGD(parameters,
                                        lr=self.lr,
                                        weight_decay=self.reg)

        self.model, self.optimizer = amp.initialize(
            self.model,
            optimizer,
            opt_level=self.opt_level,
            keep_batchnorm_fp32=self.keep_batchnorm_fp32,
            loss_scale=self.loss_scale)

        if self.optim_state is not None:
            self.optimizer.load_state_dict(self.optim_state)

        if self.amp_state is not None:
            amp.load_state_dict(self.amp_state)

        if self.distributed:
            self.model = DistributedDataParallel(self.model)

        print(self.model)

        if self.criterion_type == 'cross_entropy_loss':
            self.criterion = torch.nn.CrossEntropyLoss()

        #  Useless for now because I don't save.
        accuracies_train_iters = []
        losses_iters = []

        avg_loss = 0
        batch_time = AverageMeter()
        epoch_time = AverageMeter()
        losses = AverageMeter()

        start_training = time.time()
        for epoch in range(self.start_epoch, self.num_epochs):
            print("Start epoch..")

            # Put model in train mode
            self.model.train()

            y_true_train_epoch = np.array([])
            y_pred_train_epoch = np.array([])

            start_epoch = time.time()
            for i, (data) in enumerate(train_loader, start=0):
                start_batch = time.time()

                print('Start batch..')

                if i == len(train_sampler):  # QUE pq isso deus
                    break

                inputs, targets, input_percentages, _ = data

                input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

                inputs = inputs.to(self.device)
                targets = targets.to(self.device)

                output, loss_value = self._step(inputs, input_sizes, targets)

                print('Step finished.')

                avg_loss += loss_value

                with torch.no_grad():
                    y_pred = self.decoder.decode(output.detach()).cpu().numpy()

                    # import pdb; pdb.set_trace()

                    y_true_train_epoch = np.concatenate(
                        (y_true_train_epoch, targets.cpu().numpy()
                         ))  # maybe I should do it with tensors?
                    y_pred_train_epoch = np.concatenate(
                        (y_pred_train_epoch, y_pred))

                inputs_size = inputs.size(0)
                del output, inputs, input_percentages

                if self.intra_epoch_sanity_check:
                    with torch.no_grad():
                        acc, _ = self.check_accuracy(targets.cpu().numpy(),
                                                     y_pred=y_pred)
                        accuracies_train_iters.append(acc)
                        losses_iters.append(loss_value)

                        cm = confusion_matrix(targets.cpu().numpy(),
                                              y_pred,
                                              labels=self.labels)
                        print('[it %i/%i] Confusion matrix train step:' %
                              ((i + 1, len(train_sampler))))
                        print(pd.DataFrame(cm))

                        if self.tensorboard:
                            tensorboard_logger.update(
                                len(train_loader) * epoch + i + 1, {
                                    'Loss/through_iterations': loss_value,
                                    'Accuracy/train_through_iterations': acc
                                })

                del targets

                batch_time.update(time.time() - start_batch)

            epoch_time.update(time.time() - start_epoch)
            losses.update(loss_value, inputs_size)

            # Write elapsed time (and loss) to terminal
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Batch {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Epoch {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_sampler),
                      batch_time=batch_time,
                      data_time=epoch_time,
                      loss=losses))

            # Loss log
            avg_loss /= len(train_sampler)
            self.loss_epochs.append(avg_loss)

            # Accuracy train log
            acc_train, _ = self.check_accuracy(y_true_train_epoch,
                                               y_pred=y_pred_train_epoch)
            self.accuracy_train_epochs.append(acc_train)

            # Accuracy val log
            with torch.no_grad():
                y_pred_val = np.array([])
                targets_val = np.array([])
                for data in val_loader:
                    inputs, targets, input_percentages, _ = data
                    input_sizes = input_percentages.mul_(int(
                        inputs.size(3))).int()
                    _, y_pred_val_batch = self.check_accuracy(
                        targets.cpu().numpy(),
                        inputs=inputs,
                        input_sizes=input_sizes)
                    y_pred_val = np.concatenate((y_pred_val, y_pred_val_batch))
                    targets_val = np.concatenate(
                        (targets_val, targets.cpu().numpy()
                         ))  # TO DO: think of a smarter way to do this later
                    del inputs, targets, input_percentages

            # import pdb; pdb.set_trace()
            acc_val, y_pred_val = self.check_accuracy(targets_val,
                                                      y_pred=y_pred_val)
            self.accuracy_val_epochs.append(acc_val)
            cm = confusion_matrix(targets_val, y_pred_val, labels=self.labels)
            print('Confusion matrix validation:')
            print(pd.DataFrame(cm))

            # Write epoch stuff to tensorboard
            if self.tensorboard:
                tensorboard_logger.update(
                    epoch + 1, {'Loss/through_epochs': avg_loss},
                    parameters=self.model.named_parameters)

                tensorboard_logger.update(epoch + 1, {
                    'train': acc_train,
                    'validation': acc_val
                },
                                          together=True,
                                          name='Accuracy/through_epochs')

            # Keep track of the best model
            if acc_val > self.best_acc_val:
                self.best_acc_val = acc_val
                self.best_params = {}
                for k, v in self.model.named_parameters(
                ):  # TO DO: actually copy model and save later? idk..
                    self.best_params[k] = v.clone()

            # Anneal learning rate. TO DO: find better way to this this specific to every parameter as cs231n does.
            for g in self.optimizer.param_groups:
                g['lr'] = g['lr'] / self.learning_anneal
            print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))

            # Shuffle batches order
            print("Shuffling batches...")
            train_sampler.shuffle(epoch)

            # Rechoose batches elements
            if self.sampler_type == 'random':
                train_sampler.recompute_bins()

        end_training = time.time()

        if self.tensorboard:
            tensorboard_logger.close()

        print('Elapsed time in training: %.02f ' %
              ((end_training - start_training) / 60.0))
예제 #13
0
def main():
    args = parser.parse_args()
    torch.set_printoptions(profile="full")
    criterion = nn.CrossEntropyLoss()
    class_accu_reg = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)
    class_accu_sum = tnt.meter.ClassErrorMeter(topk=[1], accuracy=True)

    audio_conf = dict(sample_rate=args.sample_rate,
                      window_size=args.window_size,
                      window_stride=args.window_stride,
                      window=args.window,
                      noise_dir=args.noise_dir,
                      noise_prob=args.noise_prob,
                      noise_levels=(args.noise_min, args.noise_max))

    train_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                       manifest_filepath=args.train_manifest,
                                       normalize=True,
                                       augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=args.val_manifest,
                                      normalize=True,
                                      augment=False)
    train_loader = AudioDataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    rnn_type = args.rnn_type.lower()
    assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"

    #print("FIRST LAYER TYPE:\t", args.first_layer_type)
    #print("MFCC TRANSFORM:\t\t", args.mfcc)

    model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                       nb_layers=args.hidden_layers,
                       rnn_type=supported_rnns[rnn_type],
                       audio_conf=audio_conf,
                       bidirectional=True,
                       cnn_features=args.cnn_features,
                       kernel=args.kernel,
                       first_layer_type=args.first_layer_type,
                       stride=args.stride,
                       mfcc=args.mfcc)

    ########
    #print(list(model.rnns.modules()))
    #for rnn in model.rnns.modules():
    #    print(rnn)#.flatten_parameters()
    #def flat_model(model):
    #    for m in model.modules():
    #        if isinstance(m, nn.LSTM):
    #            m.flatten_parameters()
    ########

    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters,
                                lr=args.lr,
                                momentum=args.momentum,
                                nesterov=True)

    #scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.learning_rate_decay_epochs, gamma=args.learning_rate_decay_rate)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)

    avg_loss = 0
    start_epoch = 0
    start_iter = 0
    best_train_accu_reg = 0
    best_train_accu_sum = 0
    best_test_accu_reg = 0
    best_test_accu_sum = 0
    best_avg_loss = float("inf")  # sys.float_info.max # 1000000
    epoch_70 = None
    epoch_90 = None
    epoch_95 = None
    epoch_99 = None

    utterance_sequence_length = int(args.utterance_miliseconds / 10)

    loss_begin = round(args.crop_begin / (10 * args.stride))
    loss_end = -round(args.crop_end / (10 * args.stride)) or None
    gap = loss_begin
    print("LOSS BEGIN:", loss_begin)
    print("LOSS END:", loss_end)

    if args.cuda:
        model = torch.nn.DataParallel(model).cuda()

    print(model)
    print("Number of parameters: ", DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    #losses = AverageMeter()

    print(args, "\n")

    for epoch in range(start_epoch, args.epochs):
        losses = AverageMeter()
        scheduler.step()
        optim_state_now = optimizer.state_dict()
        print('\nLEARNING RATE: {lr:.6f}'.format(
            lr=optim_state_now['param_groups'][0]['lr']))
        class_accu_reg.reset()
        class_accu_sum.reset()
        model.train()
        end = time.time()

        for i, (data) in enumerate(train_loader, start=start_iter):
            if i == len(train_loader):
                break

            inputs, input_percentages, speaker_labels, mfccs = data

            # measure data loading time
            data_time.update(time.time() - end)
            inputs = Variable(inputs, requires_grad=False)

            ########
            mfccs = Variable(mfccs, requires_grad=False)
            if args.mfcc == "true":
                inputs = mfccs  # <<-- This line makes us to use mfccs...
            #print("INPUTS SIZE:", inputs.size())
            #print("MFCCS SIZE:", mfccs.size())
            ########

            speaker_labels = Variable(speaker_labels, requires_grad=False)
            speaker_labels = speaker_labels.cuda(async=True).long()

            if args.cuda:
                inputs = inputs.cuda()

            ########
            ########
            sizes = inputs.size()
            inputs = inputs.view(sizes[0], sizes[1] * sizes[2],
                                 sizes[3])  # Collapse feature dimension
            #print("INPUTS SIZE: ====>>>>>\t", inputs.size())
            #start = 0
            #duration = 100
            start = random.randint(
                0, int((inputs.size(2) - 1) * (1 - args.sample_proportion)))
            duration = int((inputs.size(2)) * (args.sample_proportion))
            #start = random.randint(0, (inputs.size(3)-1)-utterance_sequence_length)
            #duration = utterance_sequence_length
            utterances = inputs[
                ..., start:start +
                duration]  # <<<<<<====== THIS IS THE MOST IMPORTANT CODE OF THE PROJECT
            #print("UTTERS SIZE: ====>>>>>\t", utterances.size(), start, start+duration)
            out = model(utterances)
            #print("OUTPUT SIZE: ====>>>>>\t", out.size())
            out = out.transpose(0, 1)  # TxNxH
            ########
            ########

            # Prints the output of the model in a sequence of probabilities of char for each audio...
            #torch.set_printoptions(profile="full")
            ####print("OUT: " + str(out.size()), "SPEAKER LABELS:" + str(speaker_labels.size()), "INPUT PERCENTAGES MEAN: " + str(input_percentages.mean()))
            #print(out[:,:,0])
            #print("SPEAKER LABELS: " + str(speaker_labels))
            #print(out[0][0])
            #softmax_output = F.softmax(out).data # This DOES NOT what I want...
            #softmax_output_alt = flex_softmax(out, axis=2).data # This is FINE!!! <<<===
            #print(softmax_output[0][0])
            #print(softmax_output_alt[0][0])
            ####new_out = torch.sum(out, 0)
            ####new_out = torch.sum(out[20:], 0)
            #print(out.size())
            #print(new_out.size())
            #print(out[-1].size())

            class_accu_reg.add(out[round(out.size(0) / 2)].data,
                               speaker_labels.data)
            class_accu_sum.add(
                torch.sum(out[loss_begin:loss_end], 0).data,
                speaker_labels.data)
            #class_accu_reg.add(processed_out.data, processed_speaker_labels.data)

            if args.loss_type == "reg":
                processed_out = out[round(out.size(0) / 2)]
                processed_speaker_labels = speaker_labels
            if args.loss_type == "mult":
                #indices = torch.LongTensor([0,2])
                mult = (round(out.size(0) / 4), round(out.size(0) / 2),
                        round(3 * out.size(0) / 4))
                processed_out = out.contiguous()[mult, ...].view(-1, 48)
                processed_speaker_labels = speaker_labels.repeat(
                    out.size(0), 1)[mult, ...].view(-1)
                #processed_out = out.contiguous()[(round(out.size(0)/4),round(out.size(0)/2),round(3*out.size(0)/4)),...].view(-1,48)
                #processed_speaker_labels = speaker_labels.repeat(out.size(0),1)[(round(out.size(0)/4),round(out.size(0)/2),round(3*out.size(0)/4)),...].view(-1)
                #processed_out = out.contiguous()[(loss_begin,round(out.size(0)/2),loss_end),...].view(-1,48)
                #processed_speaker_labels = speaker_labels.repeat(out.size(0),1)[(loss_begin,round(out.size(0)/2),loss_end),...].view(-1)
                ##speaker_labels = speaker_labels.expand(20, out.size(0))
            elif args.loss_type == "sum":
                sum_begin = round(out.size(0) / 2) - round(out.size(0) / 4)
                sum_end = round(out.size(0) / 2) + round(out.size(0) / 4)
                processed_out = torch.sum(out[sum_begin:sum_end], 0)
                processed_speaker_labels = speaker_labels
                #processed_out = torch.sum(out[loss_begin:loss_end], 0)
                #processed_speaker_labels = speaker_labels
                #processed_out = torch.sum(out, 0)
                #processed_speaker_labels = speaker_labels
            elif args.loss_type == "full":
                full_begin = round(out.size(0) / 2) - round(out.size(0) / 4)
                full_end = round(out.size(0) / 2) + round(out.size(0) / 4)
                processed_out = out.contiguous()[full_begin:full_end].view(
                    -1, 48)
                processed_speaker_labels = speaker_labels.repeat(
                    out.size(0), 1)[full_begin:full_end].view(-1)
                ##speaker_labels = speaker_labels.expand(20, out.size(0))
                #processed_out = out.contiguous()[loss_begin:loss_end].view(-1,48)
                #processed_speaker_labels = speaker_labels.repeat(out.size(0),1)[loss_begin:loss_end].view(-1)
                ##speaker_labels = speaker_labels.expand(20, out.size(0))
                #processed_out = out.contiguous().view(-1, 48)
                #processed_speaker_labels = speaker_labels.repeat(out.size(0),1).view(-1)
                ##speaker_labels = speaker_labels.expand(20, out.size(0))
            #print("PROC OUTPUT: ====>>>>>\t" + str(processed_out.size()))
            #print("PROC LABELS: ====>>>>>\t" + str(processed_speaker_labels.size()))

            loss = criterion(processed_out, processed_speaker_labels)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            loss_sum = loss.data.sum()
            inf = float("inf")
            if loss_sum == inf or loss_sum == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0
            else:
                loss_value = loss.data[0]
            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            #accu_out3 = torch.sum(flex_softmax(out[20:], axis=2), 0)
            #print(classaccu.value()[0], classaccu.value()[1])
            # Cross Entropy Loss for a Sequence (Time Series) of Output?
            #output = output.view(-1,29)
            #target = target.view(-1)
            #criterion = nn.CrossEntropyLoss()
            #loss = criterion(output,target)

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            #torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm)

            # SGD step
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if not args.silent:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Loss {loss.val:.8f} ({loss.avg:.8f})\t'
                      'CARR {carr:.2f}\t'
                      'CARS {cars:.2f}\t'.format(
                          (epoch + 1), (i + 1),
                          len(train_loader),
                          batch_time=batch_time,
                          data_time=data_time,
                          loss=losses,
                          carr=class_accu_reg.value()[0],
                          cars=class_accu_sum.value()[0]))

            if args.cuda:
                torch.cuda.synchronize()

            del loss
            del out
            del processed_out
            del speaker_labels
            del processed_speaker_labels

        avg_loss /= len(train_loader)

        if (best_avg_loss > avg_loss): best_avg_loss = avg_loss

        print("\nCURRENT EPOCH AVERAGE LOSS:\t", avg_loss)
        print("\nCURRENT EPOCH TRAINING RESULTS:\t",
              class_accu_reg.value()[0], "\t",
              class_accu_sum.value()[0], "\n")

        if (best_train_accu_reg < class_accu_reg.value()[0]):
            best_train_accu_reg = class_accu_reg.value()[0]
        if (best_train_accu_sum < class_accu_sum.value()[0]):
            best_train_accu_sum = class_accu_sum.value()[0]

        get_70 = (class_accu_reg.value()[0] > 70)
        if ((epoch_70 is None) and (get_70 == True)): epoch_70 = epoch + 1
        get_90 = (class_accu_reg.value()[0] > 90)
        if ((epoch_90 is None) and (get_90 == True)): epoch_90 = epoch + 1
        get_95 = (class_accu_reg.value()[0] > 95)
        if ((epoch_95 is None) and (get_95 == True)): epoch_95 = epoch + 1
        get_99 = (class_accu_reg.value()[0] > 99)
        if ((epoch_99 is None) and (get_99 == True)): epoch_99 = epoch + 1

        start_iter = 0  # Reset start iteration for next epoch
        model.eval()

        class_accu_reg.reset()
        class_accu_sum.reset()

        for i, (data) in enumerate(test_loader):  # test

            inputs, input_percentages, speaker_labels, mfccs = data

            inputs = Variable(inputs, volatile=True)

            ########
            mfccs = Variable(mfccs, requires_grad=False)
            if args.mfcc == "true":
                inputs = mfccs  # <<-- This line makes us to use mfccs...
            #print("INPUTS SIZE:", inputs.size())
            #print("MFCCS SIZE:", mfccs.size())
            ########

            speaker_labels = Variable(speaker_labels, requires_grad=False)
            speaker_labels = speaker_labels.cuda(async=True).long()

            if args.cuda:
                inputs = inputs.cuda()

            ########
            ########
            sizes = inputs.size()
            inputs = inputs.view(sizes[0], sizes[1] * sizes[2],
                                 sizes[3])  # Collapse feature dimension
            #print("INPUTS SIZE: ====>>>>>\t", inputs.size())
            #start = round(inputs.size(2)/2)-40
            #duration = 80
            #start = random.randint(0, int((inputs.size(3)-1)*(1-args.sample_proportion)))
            #duration = int((inputs.size(3))*(args.sample_proportion))
            #start = random.randint(0, (inputs.size(3)-1)-utterance_sequence_length)
            #duration = utterance_sequence_length
            utterances = inputs  #[...,start:start+duration] # <<<<<<====== THIS IS THE MOST IMPORTANT CODE OF THE PROJECT
            #print("UTTERS SIZE: ====>>>>>\t", utterances.size(), start, start+duration)
            out = model(utterances)
            #print("OUTPUT SIZE: ====>>>>>\t", out.size())
            out = out.transpose(0, 1)  # TxNxH
            ########
            ########

            # Prints the output of the model in a sequence of probabilities of char for each audio...
            #torch.set_printoptions(profile="full")
            ########print("OUT: " + str(out.size()), "NEW OUT:" + str(new_out.size()), "SPEAKER LABELS:" + str(speaker_labels.size()), "INPUT PERCENTAGES MEAN: " + str(input_percentages.mean()))
            #print(out[:,:,0])
            #print("SPEAKER LABELS: " + str(speaker_labels))
            #print(out[0][0])
            #softmax_output = F.softmax(out).data # This DOES NOT what I want...
            #softmax_output_alt = flex_softmax(out, axis=2).data # This is FINE!!! <<<===
            #print(softmax_output[0][0])
            #print(softmax_output_alt[0][0])
            ########

            #if args.loss_type == "reg":
            #    processed_out = out[round(out.size(0)/2)]; processed_speaker_labels = speaker_labels
            #elif args.loss_type == "sum" or "full":
            #    #processed_out = torch.sum(out[loss_begin:loss_end], 0); processed_speaker_labels = speaker_labels
            #    processed_out = torch.sum(out, 0); processed_speaker_labels = speaker_labels
            #elif args.loss_type == "full":
            #    #processed_out = out.contiguous()[loss_begin:loss_end].view(-1,48); processed_speaker_labels = speaker_labels.repeat(out.size(0),1)[loss_begin:loss_end].view(-1) #speaker_labels = speaker_labels.expand(20, out.size(0))
            #    processed_out = out.contiguous().view(-1, 48); processed_speaker_labels = speaker_labels.repeat(out.size(0),1).view(-1)  # speaker_labels = speaker_labels.expand(20, out.size(0))
            #print("OUT: " + str(out.size()), "SPEAKER LABELS:" + str(speaker_labels.size()))
            #print("PROC OUTPUT: ====>>>>>\t" + str(processed_out.size()))
            #print("PROC LABELS: ====>>>>>\t" + str(processed_speaker_labels.size()))

            class_accu_reg.add(out[round(out.size(0) / 2)].data,
                               speaker_labels.data)
            class_accu_sum.add(
                torch.sum(out[loss_begin:loss_end], 0).data,
                speaker_labels.data)
            #class_accu_reg.add(processed_out.data, processed_speaker_labels.data)

            print('Validation Summary Epoch: [{0}]\t'
                  'CARR {carr:.2f}\t'
                  'CARS {cars:.2f}\t'.format(epoch + 1,
                                             carr=class_accu_reg.value()[0],
                                             cars=class_accu_sum.value()[0]))

            if args.cuda:
                torch.cuda.synchronize()

            del out

        print("\nCURRENT EPOCH TEST RESULTS:\t",
              class_accu_reg.value()[0], "\t",
              class_accu_sum.value()[0], "\n")

        if (best_test_accu_reg < class_accu_reg.value()[0]):
            best_test_accu_reg = class_accu_reg.value()[0]
        if (best_test_accu_sum < class_accu_sum.value()[0]):
            best_test_accu_sum = class_accu_sum.value()[0]

        print("\nBEST AVERAGE LOSS:\t\t", best_avg_loss)
        print("\nBEST EPOCH TRAINING RESULTS:\t", best_train_accu_reg, "\t",
              best_train_accu_sum)
        print("\nBEST EPOCH TEST RESULTS:\t", best_test_accu_reg, "\t",
              best_test_accu_sum)
        print("\nEPOCHS 70%, 90%, 95%, 99%:\t", epoch_70, "\t", epoch_90, "\t",
              epoch_95, "\t", epoch_99, "\n")

        torch.save(
            DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch),
            args.model_path)

        avg_loss = 0

        if not args.no_bucketing and epoch == 0:
            print("Switching to bucketing sampler for following epochs")
            train_dataset = SpectrogramDatasetWithLength(
                audio_conf=audio_conf,
                manifest_filepath=args.train_manifest,
                normalize=True,
                augment=args.augment)
            sampler = BucketingSampler(train_dataset)
            train_loader.sampler = sampler
예제 #14
0
def main():
    args = parser.parse_args()

    params.cuda = not bool(args.cpu)
    print("Use cuda: {}".format(params.cuda))

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    if params.rnn_type == 'gru' and params.rnn_act_type != 'tanh':
        print(
            "ERROR: GRU does not currently support activations other than tanh"
        )
        sys.exit()

    if params.rnn_type == 'rnn' and params.rnn_act_type != 'relu':
        print("ERROR: We should be using ReLU RNNs")
        sys.exit()

    print("=======================================================")
    for arg in vars(args):
        print("***%s = %s " % (arg.ljust(25), getattr(args, arg)))
    print("=======================================================")

    save_folder = args.save_folder

    loss_results, cer_results, wer_results = torch.Tensor(
        params.epochs), torch.Tensor(params.epochs), torch.Tensor(
            params.epochs)
    best_wer = None
    try:
        os.makedirs(save_folder)
    except OSError as e:
        if e.errno == errno.EEXIST:
            print('Directory already exists.')
        else:
            raise
    criterion = CTCLoss()

    with open(params.labels_path) as label_file:
        labels = str(''.join(json.load(label_file)))
    audio_conf = dict(sample_rate=params.sample_rate,
                      window_size=params.window_size,
                      window_stride=params.window_stride,
                      window=params.window,
                      noise_dir=params.noise_dir,
                      noise_prob=params.noise_prob,
                      noise_levels=(params.noise_min, params.noise_max))

    if args.use_set == 'libri':
        testing_manifest = params.val_manifest + ("_held" if args.hold_idx >= 0
                                                  else "")
    else:
        testing_manifest = params.test_manifest

    if args.batch_size_val > 0:
        params.batch_size_val = args.batch_size_val

    print("Testing on: {}".format(testing_manifest))
    train_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                       manifest_filepath=params.val_manifest,
                                       labels=labels,
                                       normalize=True,
                                       augment=params.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=testing_manifest,
                                      labels=labels,
                                      normalize=True,
                                      augment=False)
    train_loader = AudioDataLoader(train_dataset,
                                   batch_size=params.batch_size,
                                   num_workers=1)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=params.batch_size_val,
                                  num_workers=1)

    rnn_type = params.rnn_type.lower()
    assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"

    model = DeepSpeech(rnn_hidden_size=params.hidden_size,
                       nb_layers=params.hidden_layers,
                       labels=labels,
                       rnn_type=supported_rnns[rnn_type],
                       audio_conf=audio_conf,
                       bidirectional=False,
                       rnn_activation=params.rnn_act_type,
                       bias=params.bias)

    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters,
                                lr=params.lr,
                                momentum=params.momentum,
                                nesterov=True,
                                weight_decay=params.l2)
    decoder = GreedyDecoder(labels)

    if args.continue_from:
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from)
        model.load_state_dict(package['state_dict'])
        optimizer.load_state_dict(package['optim_dict'])
        start_epoch = int(package.get(
            'epoch', 1)) - 1  # Python index start at 0 for training
        start_iter = package.get('iteration', None)
        if start_iter is None:
            start_epoch += 1  # Assume that we saved a model after an epoch finished, so start at the next epoch.
            start_iter = 0
        else:
            start_iter += 1
        avg_loss = int(package.get('avg_loss', 0))

        if args.start_epoch != -1:
            start_epoch = args.start_epoch

        avg_loss = 0
        start_epoch = 0
        start_iter = 0
        avg_training_loss = 0
        epoch = 1
    else:
        avg_loss = 0
        start_epoch = 0
        start_iter = 0
        avg_training_loss = 0
    if params.cuda:
        model = torch.nn.DataParallel(model).cuda()
        # model         = torch.nn.parallel.DistributedDataParallel(model).cuda()

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    ctc_time = AverageMeter()

    for epoch in range(start_epoch, params.epochs):

        #################################################################################################################
        #                    The test script only really cares about this section.
        #################################################################################################################
        model.eval()

        wer, cer, trials = eval_model_verbose(model, test_loader, decoder,
                                              params.cuda, args.n_trials)
        root = os.getcwd()
        outfile = osp.join(
            root,
            "inference_bs{}_i{}_gpu{}.csv".format(params.batch_size_val,
                                                  args.hold_idx, params.cuda))
        print("Exporting inference to: {}".format(outfile))
        make_file(outfile)
        write_line(
            outfile, "batch times pre normalized by hold_sec =,{}\n".format(
                args.hold_sec))
        write_line(outfile, "wer, {}\n".format(wer))
        write_line(outfile, "cer, {}\n".format(cer))
        write_line(outfile, "bs, {}\n".format(params.batch_size_val))
        write_line(outfile, "hold_idx, {}\n".format(args.hold_idx))
        write_line(outfile, "cuda, {}\n".format(params.cuda))
        write_line(outfile,
                   "avg batch time, {}\n".format(trials.avg / args.hold_sec))
        percentile_50 = np.percentile(
            trials.array, 50) / params.batch_size_val / args.hold_sec
        write_line(outfile, "50%-tile latency, {}\n".format(percentile_50))
        percentile_99 = np.percentile(
            trials.array, 99) / params.batch_size_val / args.hold_sec
        write_line(outfile, "99%-tile latency, {}\n".format(percentile_99))
        write_line(outfile, "through put, {}\n".format(1 / percentile_50))
        write_line(outfile, "data\n")
        for trial in trials.array:
            write_line(outfile, "{}\n".format(trial / args.hold_sec))

        loss_results[epoch] = avg_loss
        wer_results[epoch] = wer
        cer_results[epoch] = cer
        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

        # anneal lr
        optim_state = optimizer.state_dict()
        optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0][
            'lr'] / params.learning_anneal
        optimizer.load_state_dict(optim_state)
        print('Learning rate annealed to: {lr:.6f}'.format(
            lr=optim_state['param_groups'][0]['lr']))

        break

    print("=======================================================")
    print("***Best WER = ", best_wer)
    for arg in vars(args):
        print("***%s = %s " % (arg.ljust(25), getattr(args, arg)))
    print("=======================================================")
예제 #15
0
    # elif args.decoder == "greedy":
    #     decoder = GreedyDecoder(model.labels, blank_index=model.labels.index('_'))
    # else:
    # decoder = None
    # target_decoder = GreedyDecoder(model.labels, blank_index=model.labels.index('_'))
    decoder = MyDecoder(model.labels)
    target_decoder = MyDecoder(model.labels)

    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=args.test_manifest,
                                      metadata_file_path=metadata_path,
                                      labels=model.labels,
                                      normalize=True)
    test_loader = AudioDataLoader(
        test_dataset,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        shuffle=True
    )  # in train, the manifest will be already stratified with only train data so it's ok.
    accuracy_mean, acccuracy_std, output_data = evaluate(
        test_loader=test_loader,
        device=device,
        model=model,
        decoder=decoder,
        target_decoder=target_decoder,
        save_output=args.save_output,
        verbose=args.verbose,
        half=args.half)

    print('Test Summary \t'
          'Average accuracy {acc_mean:.3f}\t'
          'Standard deviation accuracy {acc_std:.3f}\t'.format(
예제 #16
0
def main():
    args = parser.parse_args()
    save_folder = args.save_folder
    try:
        os.makedirs(save_folder)
    except OSError as e:
        if e.errno == errno.EEXIST:
            print('Directory already exists.')
        else:
            raise
    criterion = CTCLoss()

    with open(args.labels_path) as label_file:
        labels = str(''.join(json.load(label_file)))

    audio_conf = dict(sample_rate=args.sample_rate,
                      window_size=args.window_size,
                      window_stride=args.window_stride,
                      window=args.window)

    train_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                       manifest_filepath=args.train_manifest,
                                       labels=labels,
                                       normalize=True)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf,
                                      manifest_filepath=args.val_manifest,
                                      labels=labels,
                                      normalize=True)
    train_loader = AudioDataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                       nb_layers=args.hidden_layers,
                       num_classes=len(labels))
    decoder = ArgMaxDecoder(labels)
    if args.cuda:
        model = torch.nn.DataParallel(model).cuda()
    print(model)
    parameters = model.parameters()
    optimizer = torch.optim.SGD(parameters,
                                lr=args.lr,
                                momentum=args.momentum,
                                nesterov=True)

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(args.epochs):
        model.train()
        end = time.time()
        avg_loss = 0
        for i, (data) in enumerate(train_loader):
            inputs, targets, input_percentages, target_sizes = data
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = Variable(inputs)
            target_sizes = Variable(target_sizes)
            targets = Variable(targets)

            if args.cuda:
                inputs = inputs.cuda()

            out = model(inputs)
            out = out.transpose(0, 1)  # TxNxH

            seq_length = out.size(0)
            sizes = Variable(input_percentages.mul_(int(seq_length)).int())

            loss = criterion(out, targets, sizes, target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch

            loss_sum = loss.data.sum()
            inf = float("inf")
            if loss_sum == inf or loss_sum == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0
            else:
                loss_value = loss.data[0]

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm(model.parameters(), args.max_norm)
            # SGD step
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if not args.silent:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                          (epoch + 1), (i + 1),
                          len(train_loader),
                          batch_time=batch_time,
                          data_time=data_time,
                          loss=losses))

        avg_loss /= len(train_loader)
        print('Training Summary Epoch: [{0}]\t'
              'Average Loss {loss:.3f}\t'.format((epoch + 1), loss=avg_loss))

        total_cer, total_wer = 0, 0
        for i, (data) in enumerate(test_loader):  # test
            inputs, targets, input_percentages, target_sizes = data

            inputs = Variable(inputs)

            # unflatten targets
            split_targets = []
            offset = 0
            for size in target_sizes:
                split_targets.append(targets[offset:offset + size])
                offset += size

            if args.cuda:
                inputs = inputs.cuda()

            out = model(inputs)
            out = out.transpose(0, 1)  # TxNxH
            seq_length = out.size(0)
            sizes = Variable(input_percentages.mul_(int(seq_length)).int())

            decoded_output = decoder.decode(out.data, sizes)
            target_strings = decoder.process_strings(
                decoder.convert_to_strings(split_targets))
            wer, cer = 0, 0
            for x in range(len(target_strings)):
                wer += decoder.wer(decoded_output[x],
                                   target_strings[x]) / float(
                                       len(target_strings[x].split()))
                cer += decoder.cer(decoded_output[x],
                                   target_strings[x]) / float(
                                       len(target_strings[x]))
            total_cer += cer
            total_wer += wer

        wer = total_wer / len(test_loader.dataset)
        cer = total_cer / len(test_loader.dataset)

        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.0f}\t'
              'Average CER {cer:.0f}\t'.format((epoch + 1),
                                               wer=wer * 100,
                                               cer=cer * 100))
        if args.epoch_save:
            file_path = '%s/deepspeech_%d.pth.tar' % (save_folder, epoch)
            torch.save(checkpoint(model, args, len(labels), epoch), file_path)
    torch.save(checkpoint(model, args, len(labels)), args.final_model_path)