def init_train_set(epoch, from_iter): #train_dataset.set_curriculum_epoch(epoch, sample=True) train_dataset.set_curriculum_epoch(epoch, sample=False) global train_loader, train_sampler if not args.distributed: train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size) train_sampler.bins = train_sampler.bins[from_iter:] else: train_sampler = DistributedBucketingSampler( train_dataset, batch_size=args.batch_size, num_replicas=args.world_size, rank=args.rank) train_loader = AudioDataLoader(train_dataset, num_workers=args.num_workers, batch_sampler=train_sampler) if (not args.no_shuffle and epoch != 0) or args.no_sorta_grad: print("Shuffling batches for the following epochs") train_sampler.shuffle(epoch)
manifest_filepath=args.train_manifest, labels=labels, normalize=True, augment=args.augment) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels, normalize=True, augment=False) if not args.distributed: train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size) else: train_sampler = DistributedBucketingSampler( train_dataset, batch_size=args.batch_size, num_replicas=args.world_size, rank=args.rank) train_loader = AudioDataLoader(train_dataset, num_workers=args.num_workers, batch_sampler=train_sampler) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad: print("Shuffling batches for the following epochs") train_sampler.shuffle(start_epoch) try: model.load_state_dict(torch.load(args.weights)['state_dict'],
def train_main(args): args.distributed = args.world_size > 1 main_proc = True if args.distributed: if args.gpu_rank: torch.cuda.set_device(int(args.gpu_rank)) dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) main_proc = args.rank == 0 # Only the first proc should save models save_folder = args.save_folder loss_results, cer_results, wer_results = torch.Tensor(args.epochs), torch.Tensor(args.epochs), torch.Tensor( args.epochs) best_wer = None if args.visdom and main_proc: from visdom import Visdom viz = Visdom() opts = dict(title=args.id, ylabel='', xlabel='Epoch', legend=['Loss', 'WER', 'CER']) viz_window = None epochs = torch.arange(1, args.epochs + 1) if args.tensorboard and main_proc: os.makedirs(args.log_dir, exist_ok=True) from tensorboardX import SummaryWriter tensorboard_writer = SummaryWriter(args.log_dir) os.makedirs(save_folder, exist_ok=True) avg_loss, start_epoch, start_iter = 0, 0, 0 if args.continue_from: # Starting from previous model print("Loading checkpoint model %s" % args.continue_from) package = torch.load(args.continue_from, map_location=lambda storage, loc: storage) model = DeepSpeech.load_model_package(package) labels = DeepSpeech.get_labels(model) audio_conf = DeepSpeech.get_audio_conf(model) parameters = model.parameters() optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=args.momentum, nesterov=True) if not args.finetune: # Don't want to restart training if args.cuda: model.cuda() optimizer.load_state_dict(package['optim_dict']) start_epoch = int(package.get('epoch', 1)) - 1 # Index start at 0 for training start_iter = package.get('iteration', None) if start_iter is None: start_epoch += 1 # We saved model after epoch finished, start at the next epoch. start_iter = 0 else: start_iter += 1 avg_loss = int(package.get('avg_loss', 0)) loss_results, cer_results, wer_results = package['loss_results'], package[ 'cer_results'], package['wer_results'] if main_proc and args.visdom and \ package[ 'loss_results'] is not None and start_epoch > 0: # Add previous scores to visdom graph x_axis = epochs[0:start_epoch] y_axis = torch.stack( (loss_results[0:start_epoch], wer_results[0:start_epoch], cer_results[0:start_epoch]), dim=1) viz_window = viz.line( X=x_axis, Y=y_axis, opts=opts, ) if main_proc and args.tensorboard and \ package[ 'loss_results'] is not None and start_epoch > 0: # Previous scores to tensorboard logs for i in range(start_epoch): values = { 'Avg Train Loss': loss_results[i], 'Avg WER': wer_results[i], 'Avg CER': cer_results[i] } tensorboard_writer.add_scalars(args.id, values, i + 1) else: with open(args.labels_path) as label_file: labels = str(''.join(json.load(label_file))) audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window, noise_dir=args.noise_dir, noise_prob=args.noise_prob, noise_levels=(args.noise_min, args.noise_max)) rnn_type = args.rnn_type.lower() assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru" model = DeepSpeech(rnn_hidden_size=args.hidden_size, nb_layers=args.hidden_layers, labels=labels, rnn_type=supported_rnns[rnn_type], audio_conf=audio_conf, bidirectional=args.bidirectional) parameters = model.parameters() optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=args.momentum, nesterov=True) criterion = CTCLoss() decoder = GreedyDecoder(labels) train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels, normalize=True, augment=args.augment) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels, normalize=True, augment=False) if not args.distributed: train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size) else: train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size, num_replicas=args.world_size, rank=args.rank) train_loader = AudioDataLoader(train_dataset, num_workers=args.num_workers, batch_sampler=train_sampler) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad: print("Shuffling batches for the following epochs") train_sampler.shuffle(start_epoch) if args.cuda: model.cuda() if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=(int(args.gpu_rank),) if args.rank else None) print(model) print("Number of parameters: %d" % DeepSpeech.get_param_size(model)) batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() for epoch in range(start_epoch, args.epochs): model.train() end = time.time() start_epoch_time = time.time() for i, (data) in enumerate(train_loader, start=start_iter): if i == len(train_sampler): break inputs, targets, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() # measure data loading time data_time.update(time.time() - end) if args.cuda: inputs = inputs.cuda() out, output_sizes = model(inputs, input_sizes) out = out.transpose(0, 1) # TxNxH loss = criterion(out, targets, output_sizes, target_sizes) loss = loss / inputs.size(0) # average the loss by minibatch inf = float("inf") if args.distributed: loss_value = reduce_tensor(loss, args.world_size)[0] else: loss_value = loss.item() if loss_value == inf or loss_value == -inf: print("WARNING: received an inf loss, setting loss value to 0") loss_value = 0 avg_loss += loss_value losses.update(loss_value, inputs.size(0)) # compute gradient optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm) # SGD step optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if not args.silent: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( (epoch + 1), (i + 1), len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses)) if args.checkpoint_per_batch > 0 and i > 0 and (i + 1) % args.checkpoint_per_batch == 0 and main_proc: file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth' % (save_folder, epoch + 1, i + 1) print("Saving checkpoint model to %s" % file_path) torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss), file_path) del loss del out avg_loss /= len(train_sampler) epoch_time = time.time() - start_epoch_time print('Training Summary Epoch: [{0}]\t' 'Time taken (s): {epoch_time:.0f}\t' 'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=avg_loss)) start_iter = 0 # Reset start iteration for next epoch total_cer, total_wer = 0, 0 model.eval() with torch.no_grad(): for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)): inputs, targets, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size if args.cuda: inputs = inputs.cuda() out, output_sizes = model(inputs, input_sizes) decoded_output, _ = decoder.decode(out.data, output_sizes) target_strings = decoder.convert_to_strings(split_targets) wer, cer = 0, 0 for x in range(len(target_strings)): transcript, reference = decoded_output[x][0], target_strings[x][0] wer += decoder.wer(transcript, reference) / float(len(reference.split())) cer += decoder.cer(transcript, reference) / float(len(reference)) total_cer += cer total_wer += wer del out wer = total_wer / len(test_loader.dataset) cer = total_cer / len(test_loader.dataset) wer *= 100 cer *= 100 loss_results[epoch] = avg_loss wer_results[epoch] = wer cer_results[epoch] = cer print('Validation Summary Epoch: [{0}]\t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer)) if args.visdom and main_proc: x_axis = epochs[0:epoch + 1] y_axis = torch.stack( (loss_results[0:epoch + 1], wer_results[0:epoch + 1], cer_results[0:epoch + 1]), dim=1) if viz_window is None: viz_window = viz.line( X=x_axis, Y=y_axis, opts=opts, ) else: viz.line( X=x_axis.unsqueeze(0).expand(y_axis.size(1), x_axis.size(0)).transpose(0, 1), # Visdom fix Y=y_axis, win=viz_window, update='replace', ) if args.tensorboard and main_proc: values = { 'Avg Train Loss': avg_loss, 'Avg WER': wer, 'Avg CER': cer } tensorboard_writer.add_scalars(args.id, values, epoch + 1) if args.log_params: for tag, value in model.named_parameters(): tag = tag.replace('.', '/') tensorboard_writer.add_histogram(tag, to_np(value), epoch + 1) tensorboard_writer.add_histogram(tag + '/grad', to_np(value.grad), epoch + 1) if args.checkpoint and main_proc: file_path = '%s/deepspeech_%d.pth' % (save_folder, epoch + 1) torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results), file_path) # anneal lr optim_state = optimizer.state_dict() optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal optimizer.load_state_dict(optim_state) print('Learning rate annealed to: {lr:.6f}'.format(lr=optim_state['param_groups'][0]['lr'])) if (best_wer is None or best_wer > wer) and main_proc: print("Found better validated model, saving to %s" % args.model_path) torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results, wer_results=wer_results, cer_results=cer_results), args.model_path) best_wer = wer avg_loss = 0 if not args.no_shuffle: print("Shuffling batches...") train_sampler.shuffle(epoch)
normalize=True, augment=args.augment) test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels, normalize=True, augment=False) if not args.distributed: train_sampler_clean = BucketingSampler(train_dataset_clean, batch_size=args.batch_size) train_sampler_adv = BucketingSampler(train_dataset_adv, batch_size=args.batch_size) else: train_sampler_clean = DistributedBucketingSampler( train_dataset_clean, batch_size=args.batch_size, num_replicas=args.world_size, rank=args.rank) train_sampler_adv = DistributedBucketingSampler( train_dataset_adv, batch_size=args.batch_size, num_replicas=args.world_size, rank=args.rank) train_loader_clean = AudioDataLoader(train_dataset_clean, num_workers=args.num_workers, batch_sampler=train_sampler_clean) train_loader_adv = AudioDataLoader(train_dataset_adv, num_workers=args.num_workers, batch_sampler=train_sampler_adv) test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
def train(self, **kwargs): """ Run optimization to train the model. Parameters ---------- """ world_size = kwargs.pop('world_size', 1) gpu_rank = kwargs.pop('gpu_rank', 0) rank = kwargs.pop('rank', 0) dist_backend = kwargs.pop('dist_backend', 'nccl') dist_url = kwargs.pop('dist_url', None) os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '1234' main_proc = True self.distributed = world_size > 1 if self.distributed: if self.gpu_rank: torch.cuda.set_device(int(gpu_rank)) dist.init_process_group(backend=dist_backend, init_method=dist_url, world_size=world_size, rank=rank) print('Initiated process group') main_proc = rank == 0 # Only the first proc should save models if main_proc and self.tensorboard: tensorboard_logger = TensorBoardLogger(self.id, self.log_dir, self.log_params, comment=self.sufix) if self.distributed: train_sampler = DistributedBucketingSampler( self.data_train, batch_size=self.batch_size, num_replicas=world_size, rank=rank) else: if self.sampler_type == 'bucketing': train_sampler = BucketingSampler(self.data_train, batch_size=self.batch_size, shuffle=True) if self.sampler_type == 'random': train_sampler = RandomBucketingSampler( self.data_train, batch_size=self.batch_size) print("Shuffling batches for the following epochs..") train_sampler.shuffle(self.start_epoch) train_loader = AudioDataLoader(self.data_train, num_workers=self.num_workers, batch_sampler=train_sampler) val_loader = AudioDataLoader(self.data_val, batch_size=self.batch_size_val, num_workers=self.num_workers, shuffle=True) if self.tensorboard and self.generate_graph: # TO DO get some audios also with torch.no_grad(): inputs, targets, input_percentages, target_sizes = next( iter(train_loader)) input_sizes = input_percentages.mul_(int(inputs.size(3))).int() tensorboard_logger.add_image(inputs, input_sizes, targets, network=self.model) self.model = self.model.to(self.device) parameters = self.model.parameters() if self.update_rule == 'adam': optimizer = torch.optim.Adam(parameters, lr=self.lr, weight_decay=self.reg) if self.update_rule == 'sgd': optimizer = torch.optim.SGD(parameters, lr=self.lr, weight_decay=self.reg) self.model, self.optimizer = amp.initialize( self.model, optimizer, opt_level=self.opt_level, keep_batchnorm_fp32=self.keep_batchnorm_fp32, loss_scale=self.loss_scale) if self.optim_state is not None: self.optimizer.load_state_dict(self.optim_state) if self.amp_state is not None: amp.load_state_dict(self.amp_state) if self.distributed: self.model = DistributedDataParallel(self.model) print(self.model) if self.criterion_type == 'cross_entropy_loss': self.criterion = torch.nn.CrossEntropyLoss() # Useless for now because I don't save. accuracies_train_iters = [] losses_iters = [] avg_loss = 0 batch_time = AverageMeter() epoch_time = AverageMeter() losses = AverageMeter() start_training = time.time() for epoch in range(self.start_epoch, self.num_epochs): print("Start epoch..") # Put model in train mode self.model.train() y_true_train_epoch = np.array([]) y_pred_train_epoch = np.array([]) start_epoch = time.time() for i, (data) in enumerate(train_loader, start=0): start_batch = time.time() print('Start batch..') if i == len(train_sampler): # QUE pq isso deus break inputs, targets, input_percentages, _ = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() inputs = inputs.to(self.device) targets = targets.to(self.device) output, loss_value = self._step(inputs, input_sizes, targets) print('Step finished.') avg_loss += loss_value with torch.no_grad(): y_pred = self.decoder.decode(output.detach()).cpu().numpy() # import pdb; pdb.set_trace() y_true_train_epoch = np.concatenate( (y_true_train_epoch, targets.cpu().numpy() )) # maybe I should do it with tensors? y_pred_train_epoch = np.concatenate( (y_pred_train_epoch, y_pred)) inputs_size = inputs.size(0) del output, inputs, input_percentages if self.intra_epoch_sanity_check: with torch.no_grad(): acc, _ = self.check_accuracy(targets.cpu().numpy(), y_pred=y_pred) accuracies_train_iters.append(acc) losses_iters.append(loss_value) cm = confusion_matrix(targets.cpu().numpy(), y_pred, labels=self.labels) print('[it %i/%i] Confusion matrix train step:' % ((i + 1, len(train_sampler)))) print(pd.DataFrame(cm)) if self.tensorboard: tensorboard_logger.update( len(train_loader) * epoch + i + 1, { 'Loss/through_iterations': loss_value, 'Accuracy/train_through_iterations': acc }) del targets batch_time.update(time.time() - start_batch) epoch_time.update(time.time() - start_epoch) losses.update(loss_value, inputs_size) # Write elapsed time (and loss) to terminal print('Epoch: [{0}][{1}/{2}]\t' 'Batch {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Epoch {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( (epoch + 1), (i + 1), len(train_sampler), batch_time=batch_time, data_time=epoch_time, loss=losses)) # Loss log avg_loss /= len(train_sampler) self.loss_epochs.append(avg_loss) # Accuracy train log acc_train, _ = self.check_accuracy(y_true_train_epoch, y_pred=y_pred_train_epoch) self.accuracy_train_epochs.append(acc_train) # Accuracy val log with torch.no_grad(): y_pred_val = np.array([]) targets_val = np.array([]) for data in val_loader: inputs, targets, input_percentages, _ = data input_sizes = input_percentages.mul_(int( inputs.size(3))).int() _, y_pred_val_batch = self.check_accuracy( targets.cpu().numpy(), inputs=inputs, input_sizes=input_sizes) y_pred_val = np.concatenate((y_pred_val, y_pred_val_batch)) targets_val = np.concatenate( (targets_val, targets.cpu().numpy() )) # TO DO: think of a smarter way to do this later del inputs, targets, input_percentages # import pdb; pdb.set_trace() acc_val, y_pred_val = self.check_accuracy(targets_val, y_pred=y_pred_val) self.accuracy_val_epochs.append(acc_val) cm = confusion_matrix(targets_val, y_pred_val, labels=self.labels) print('Confusion matrix validation:') print(pd.DataFrame(cm)) # Write epoch stuff to tensorboard if self.tensorboard: tensorboard_logger.update( epoch + 1, {'Loss/through_epochs': avg_loss}, parameters=self.model.named_parameters) tensorboard_logger.update(epoch + 1, { 'train': acc_train, 'validation': acc_val }, together=True, name='Accuracy/through_epochs') # Keep track of the best model if acc_val > self.best_acc_val: self.best_acc_val = acc_val self.best_params = {} for k, v in self.model.named_parameters( ): # TO DO: actually copy model and save later? idk.. self.best_params[k] = v.clone() # Anneal learning rate. TO DO: find better way to this this specific to every parameter as cs231n does. for g in self.optimizer.param_groups: g['lr'] = g['lr'] / self.learning_anneal print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr'])) # Shuffle batches order print("Shuffling batches...") train_sampler.shuffle(epoch) # Rechoose batches elements if self.sampler_type == 'random': train_sampler.recompute_bins() end_training = time.time() if self.tensorboard: tensorboard_logger.close() print('Elapsed time in training: %.02f ' % ((end_training - start_training) / 60.0))