def train_efficientnet(dataset, model_type="resnet18", data_dir=None, skip=None): data_transform = get_default_transformation() train_dataset = CustomDataset( dataset=dataset, transformer=data_transform, data_type="train", root_dir=data_dir, skip=skip, ) test_dataset = CustomDataset(dataset=dataset, transformer=data_transform, data_type="test", root_dir=data_dir) dataset_loaders = { "train": torch.utils.data.DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=4), "val": torch.utils.data.DataLoader(test_dataset, batch_size=8, shuffle=False, num_workers=4), } print(f"Num of classes {len(train_dataset.classes)}") model_ft = create_efficientnetb0_model( num_of_classes=len(train_dataset.classes)) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) model_ft = train_model( model_ft, dataset_loaders, criterion, optimizer_ft, exp_lr_scheduler, device, num_epochs=15, ) return model_ft
def get_data_loader(opt): if opt.is_train: transform = transforms.Compose([ transforms.Resize([opt.width_size + 32, opt.width_size + 32]), transforms.RandomHorizontalFlip(), transforms.RandomResizedCrop(opt.width_size, scale=(0.4, 0.95)), transforms.ToTensor(), ]) else: transform = transforms.Compose([ transforms.Resize([opt.width_size + 32, opt.width_size + 32]), transforms.CenterCrop(opt.width_size), transforms.ToTensor(), ]) if opt.dataset == 'CARS': if opt.is_train: train_set = CarsDataset( root_dir=opt.data_dir, train=True, transform=transform, ) return DataLoader(train_set, batch_size=opt.small_batch_size, shuffle=True, num_workers=opt.num_preprocess_workers, drop_last=True) else: test_set = CarsDataset( root_dir=opt.data_dir, train=False, transform=transform, ) return DataLoader( test_set, batch_size=opt.small_batch_size, shuffle=False, num_workers=opt.num_preprocess_workers, ) elif opt.dataset == 'Custom': train_set = CustomDataset(transform=transform, ) return DataLoader(train_set, batch_size=opt.small_batch_size, shuffle=True, num_workers=opt.num_preprocess_workers, drop_last=True)
def load_data(params): """ 1.creat dataset 2.load data in specific batch size return data iterator """ if params.dataset_name == 'horse2zebra': dataset = CustomDataset(params) if params.dataset_name == 'mnist': if not os.path.exists(params.dataset_path): os.makedirs(params.dataset_path) dataset = datasets.MNIST(root=params.dataset_path, train=params.isTrain, transform=params.transform, download=True) dataloader = DataLoader(dataset, batch_size=params.batch_size, shuffle=params.shuffle, drop_last=True) return dataloader
def measure_model( model_version, dataset, out_folder, weights_dir, device, method=METHODS["gradcam"], sample_images=50, step=1, ): invTrans = get_inverse_normalization_transformation() data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) # print(model) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, step=step, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) try: image_ids = random.sample(range(0, test_dataset.__len__()), sample_images) except ValueError: raise ValueError( f"Image sample number ({sample_images}) exceeded dataset size ({test_dataset.__len__()})." ) classes_map = test_dataset.classes_map print(f"Measuring {model_version} on {dataset} dataset, with {method}") print("-" * 10) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") multipy_by_inputs = False if method == METHODS["ig"]: attr_method = IntegratedGradients(model) nt_samples = 8 n_perturb_samples = 3 if method == METHODS["saliency"]: attr_method = Saliency(model) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["gradcam"]: if model_version == "efficientnet": attr_method = GuidedGradCam(model, model._conv_stem) elif model_version == "densenet": attr_method = GuidedGradCam(model, model.features.conv0) else: attr_method = GuidedGradCam(model, model.conv1) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["deconv"]: attr_method = Deconvolution(model) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["gradshap"]: attr_method = GradientShap(model) nt_samples = 8 if model_version == "efficientnet": n_perturb_samples = 3 elif model_version == "densenet": n_perturb_samples = 2 else: n_perturb_samples = 10 if method == METHODS["gbp"]: attr_method = GuidedBackprop(model) nt_samples = 8 n_perturb_samples = 10 if method == "lime": attr_method = Lime(model) nt_samples = 8 n_perturb_samples = 10 feature_mask = torch.tensor(lime_mask).to(device) multipy_by_inputs = True if method == METHODS['ig']: nt = attr_method else: nt = NoiseTunnel(attr_method) scores = [] @infidelity_perturb_func_decorator(multipy_by_inputs=multipy_by_inputs) def perturb_fn(inputs): noise = torch.tensor(np.random.normal(0, 0.003, inputs.shape)).float() noise = noise.to(device) return inputs - noise for input, label in data_loader: pbar.update(1) inv_input = invTrans(input) input = input.to(device) input.requires_grad = True output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) prediction_score = prediction_score.cpu().detach().numpy()[0][0] pred_label_idx.squeeze_() if method == METHODS['gradshap']: baseline = torch.randn(input.shape) baseline = baseline.to(device) if method == "lime": attributions = attr_method.attribute(input, target=1, n_samples=50) elif method == METHODS['ig']: attributions = nt.attribute( input, target=pred_label_idx, n_steps=25, ) elif method == METHODS['gradshap']: attributions = nt.attribute(input, target=pred_label_idx, baselines=baseline) else: attributions = nt.attribute( input, nt_type="smoothgrad", nt_samples=nt_samples, target=pred_label_idx, ) infid = infidelity(model, perturb_fn, input, attributions, target=pred_label_idx) if method == "lime": sens = sensitivity_max( attr_method.attribute, input, target=pred_label_idx, n_perturb_samples=1, n_samples=200, feature_mask=feature_mask, ) elif method == METHODS['ig']: sens = sensitivity_max( nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, n_steps=25, ) elif method == METHODS['gradshap']: sens = sensitivity_max(nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, baselines=baseline) else: sens = sensitivity_max( nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, ) inf_value = infid.cpu().detach().numpy()[0] sens_value = sens.cpu().detach().numpy()[0] if pbar.n in image_ids: attr_data = attributions.squeeze().cpu().detach().numpy() fig, ax = viz.visualize_image_attr_multiple( np.transpose(attr_data, (1, 2, 0)), np.transpose(inv_input.squeeze().cpu().detach().numpy(), (1, 2, 0)), ["original_image", "heat_map"], ["all", "positive"], titles=["original_image", "heat_map"], cmap=default_cmap, show_colorbar=True, use_pyplot=False, fig_size=(8, 6), ) ax[0].set_xlabel( f"Infidelity: {'{0:.6f}'.format(inf_value)}\n Sensitivity: {'{0:.6f}'.format(sens_value)}" ) fig.suptitle( f"True: {classes_map[str(label.numpy()[0])][0]}, Pred: {classes_map[str(pred_label_idx.item())][0]}\nScore: {'{0:.4f}'.format(prediction_score)}", fontsize=16, ) fig.savefig( os.path.join( out_folder, f"{str(pbar.n)}-{classes_map[str(label.numpy()[0])][0]}-{classes_map[str(pred_label_idx.item())][0]}.png", )) plt.close(fig) # if pbar.n > 25: # break scores.append([inf_value, sens_value]) pbar.close() np.savetxt( os.path.join(out_folder, f"{model_version}-{dataset}-{method}.csv"), np.array(scores), delimiter=",", header="infidelity,sensitivity", ) print(f"Artifacts stored at {out_folder}")
def measure_filter_model( model_version, dataset, out_folder, weights_dir, device, method=METHODS["gradcam"], sample_images=50, step=1, use_infidelity=False, use_sensitivity=False, render=False, ids=None, ): invTrans = get_inverse_normalization_transformation() data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) # print(model) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, step=step, add_filters=True, ids=ids, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) try: image_ids = random.sample(range(0, test_dataset.__len__()), test_dataset.__len__()) except ValueError: raise ValueError( f"Image sample number ({test_dataset.__len__()}) exceeded dataset size ({test_dataset.__len__()})." ) classes_map = test_dataset.classes_map print(f"Measuring {model_version} on {dataset} dataset, with {method}") print("-" * 10) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") multipy_by_inputs = False if method == METHODS["ig"]: attr_method = IntegratedGradients(model) nt_samples = 1 n_perturb_samples = 1 if method == METHODS["saliency"]: attr_method = Saliency(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gradcam"]: if model_version == "efficientnet": attr_method = GuidedGradCam(model, model._conv_stem) elif model_version == "densenet": attr_method = GuidedGradCam(model, model.features.conv0) else: attr_method = GuidedGradCam(model, model.conv1) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["deconv"]: attr_method = Deconvolution(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gradshap"]: attr_method = GradientShap(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gbp"]: attr_method = GuidedBackprop(model) nt_samples = 8 n_perturb_samples = 2 if method == "lime": attr_method = Lime(model) nt_samples = 8 n_perturb_samples = 2 feature_mask = torch.tensor(lime_mask).to(device) multipy_by_inputs = True if method == METHODS["ig"]: nt = attr_method else: nt = NoiseTunnel(attr_method) scores = [] @infidelity_perturb_func_decorator(multipy_by_inputs=multipy_by_inputs) def perturb_fn(inputs): noise = torch.tensor(np.random.normal(0, 0.003, inputs.shape)).float() noise = noise.to(device) return inputs - noise OUR_FILTERS = [ "none", "fx_freaky_details 2,10,1,11,0,32,0", "normalize_local 8,10", "fx_boost_chroma 90,0,0", "fx_mighty_details 25,1,25,1,11,0", "sharpen 300", ] idx = 0 filter_count = 0 filter_attrs = {filter_name: [] for filter_name in OUR_FILTERS} predicted_main_class = 0 for input, label in data_loader: pbar.update(1) inv_input = invTrans(input) input = input.to(device) input.requires_grad = True output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) prediction_score = prediction_score.cpu().detach().numpy()[0][0] pred_label_idx.squeeze_() if OUR_FILTERS[filter_count] == 'none': predicted_main_class = pred_label_idx.item() if method == METHODS["gradshap"]: baseline = torch.randn(input.shape) baseline = baseline.to(device) if method == "lime": attributions = attr_method.attribute(input, target=1, n_samples=50) elif method == METHODS["ig"]: attributions = nt.attribute( input, target=predicted_main_class, n_steps=25, ) elif method == METHODS["gradshap"]: attributions = nt.attribute(input, target=predicted_main_class, baselines=baseline) else: attributions = nt.attribute( input, nt_type="smoothgrad", nt_samples=nt_samples, target=predicted_main_class, ) if use_infidelity: infid = infidelity(model, perturb_fn, input, attributions, target=predicted_main_class) inf_value = infid.cpu().detach().numpy()[0] else: inf_value = 0 if use_sensitivity: if method == "lime": sens = sensitivity_max( attr_method.attribute, input, target=predicted_main_class, n_perturb_samples=1, n_samples=200, feature_mask=feature_mask, ) elif method == METHODS["ig"]: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, n_steps=25, ) elif method == METHODS["gradshap"]: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, baselines=baseline, ) else: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, ) sens_value = sens.cpu().detach().numpy()[0] else: sens_value = 0 # filter_name = test_dataset.data.iloc[pbar.n]["filter"].split(" ")[0] attr_data = attributions.squeeze().cpu().detach().numpy() if render: fig, ax = viz.visualize_image_attr_multiple( np.transpose(attr_data, (1, 2, 0)), np.transpose(inv_input.squeeze().cpu().detach().numpy(), (1, 2, 0)), ["original_image", "heat_map"], ["all", "positive"], titles=["original_image", "heat_map"], cmap=default_cmap, show_colorbar=True, use_pyplot=False, fig_size=(8, 6), ) if use_sensitivity or use_infidelity: ax[0].set_xlabel( f"Infidelity: {'{0:.6f}'.format(inf_value)}\n Sensitivity: {'{0:.6f}'.format(sens_value)}" ) fig.suptitle( f"True: {classes_map[str(label.numpy()[0])][0]}, Pred: {classes_map[str(pred_label_idx.item())][0]}\nScore: {'{0:.4f}'.format(prediction_score)}", fontsize=16, ) fig.savefig( os.path.join( out_folder, f"{str(idx)}-{str(filter_count)}-{str(label.numpy()[0])}-{str(OUR_FILTERS[filter_count])}-{classes_map[str(label.numpy()[0])][0]}-{classes_map[str(pred_label_idx.item())][0]}.png", )) plt.close(fig) # if pbar.n > 25: # break score_for_true_label = output.cpu().detach().numpy( )[0][predicted_main_class] filter_attrs[OUR_FILTERS[filter_count]] = [ np.moveaxis(attr_data, 0, -1), "{0:.8f}".format(score_for_true_label), ] data_range_for_current_set = MAX_ATT_VALUES[model_version][method][ dataset] filter_count += 1 if filter_count >= len(OUR_FILTERS): ssims = [] for rot in OUR_FILTERS: ssims.append("{0:.8f}".format( ssim( filter_attrs["none"][0], filter_attrs[rot][0], win_size=11, data_range=data_range_for_current_set, multichannel=True, ))) ssims.append(filter_attrs[rot][1]) scores.append(ssims) filter_count = 0 predicted_main_class = 0 idx += 1 pbar.close() indexes = [] for filter_name in OUR_FILTERS: indexes.append(str(filter_name) + "-ssim") indexes.append(str(filter_name) + "-score") np.savetxt( os.path.join( out_folder, f"{model_version}-{dataset}-{method}-ssim-with-range.csv"), np.array(scores), delimiter=";", fmt="%s", header=";".join([str(rot) for rot in indexes]), ) print(f"Artifacts stored at {out_folder}")
def test_model(model_version, dataset, out_folder, weights_dir, device, version="100%"): data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) preds = [] labels = [] scores = [] print("-" * 30) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") for input, label in data_loader: input = input.to(device) pbar.update(1) output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) pred_label_idx.squeeze_() label_val = int(label.detach().numpy()[0]) pred_val = int(pred_label_idx.detach().item()) labels.append(label_val) preds.append(pred_val) scores.append([ label_val, pred_val, label_val == pred_val, prediction_score.detach().cpu().numpy()[0][0], ]) pbar.close() conf_matrix, class_report = run_eval(preds, labels, test_dataset.classes) f1 = "{0:.4f}".format(class_report["weighted avg"]["f1-score"]) acc = "{0:.4f}".format(class_report["weighted avg"]["precision"]) subtitle = f"F1: {f1}, Prec: {acc}" save_cm( conf_matrix, test_dataset.classes, os.path.join(out_folder, f"{model_version}-{dataset}-{version}.png"), subtitle=subtitle, ) classification_report_latex( class_report, filename=os.path.join(out_folder, f"{model_version}-{dataset}-{version}.txt"), ) with open( os.path.join(out_folder, f"{model_version}-{dataset}-{version}.csv"), "w") as tf: tf.write(f"{f1},{acc}") scores_df = pd.DataFrame(np.array(scores), columns=['true', 'pred', 'currect', 'score']) scores_df.to_csv( os.path.join(out_folder, f"{model_version}-{dataset}-{version}-scores.csv")) print( f'Artifacts stored at {os.path.join(out_folder, f"{model_version}-{dataset}-{version}")}.*' )