def run(config): seed = config['seed'] random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) exp_dir = get_experiment_dir(config) run_dir = os.path.join(exp_dir, 'seed_{}'.format(config['seed'])) # tensorboard logger writer = SummaryWriter(run_dir) # get data loaders and metrics function if config['dataset'] == 'openmic': (train_loader, val_loader, test_loader), _ = get_openmic_loaders(config) n_classes = 20 metric_fn = evaluate.metrics.metric_fn_openmic elif config['dataset'] == 'sonyc': (train_loader, val_loader, test_loader), train_dataset = get_sonyc_loaders(config) if config['coarse']: n_classes = 8 else: n_classes = 23 metric_fn = evaluate.metrics.metric_fn_sonycust # Randomly remove labels if 'label_drop_rate' in config: label_drop_rate = config['label_drop_rate'] drop_mask = np.random.rand(*train_dataset.Y_mask.shape) drop_mask = train_dataset.Y_mask + drop_mask train_dataset.Y_mask = drop_mask > (1 + label_drop_rate) # hyper params hparams = config['hparams'] lr = hparams['lr'] wd = hparams['wd'] model_params = { 'n_features': hparams['n_features'], 'drop_rate': hparams['dropout'], 'n_classes': n_classes, 'n_layers': hparams['n_layers'] } num_epochs = hparams['num_epochs'] c_w = hparams['cw'] alpha = hparams['alpha'] # initialize models model = create_model(model_params) teacher = create_model(model_params, no_grad=True) # initialize criterion and optimizer criterion = nn.BCELoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd) # initialize best metric variables best_models = [None, None] best_teachers = [None, None] best_val_loss = 100000.0 best_f1_macro = -1.0 best_val_loss_t = 100000.0 best_f1_macro_t = -1.0 # training loop for epoch in tqdm(range(num_epochs)): # drop learning rate every 30 epochs if (epoch > 0) and (epoch % 30 == 0): for param_group in optimizer.param_groups: param_group['lr'] = lr * 0.5 lr = lr * 0.5 train_losses = trainer_mt(model, teacher, train_loader, optimizer, criterion, c_w, alpha, epoch) print('#### Training ####') print('Loss: {}'.format(train_losses)) val_losses, metrics, metrics_t = eval_mt(model, teacher, val_loader, criterion, n_classes, metric_fn) val_metric = 'F1_macro' if config[ 'dataset'] == 'openmic' else 'auprc_macro' avg_val_metric = np.mean(metrics[val_metric]) avg_val_metric_t = np.mean(metrics_t[val_metric]) print('#### Validation ####') print('Losses: {}\nMacro F1 score: {}\t Teacher macro F1 score: {}'. format(val_losses, avg_val_metric, avg_val_metric_t)) # log to tensorboard writer.add_scalar("train/class_loss", train_losses[0], epoch) writer.add_scalar("train/consi_loss", train_losses[1], epoch) writer.add_scalar("val/class_loss", val_losses[0], epoch) writer.add_scalar("val/class_loss_teacher", val_losses[1], epoch) writer.add_scalar("val/consi_loss", val_losses[2], epoch) writer.add_scalar(f"val/{val_metric}", avg_val_metric, epoch) writer.add_scalar(f"val/{val_metric}_teacher", avg_val_metric_t, epoch) # Save best models if val_losses[0] < best_val_loss: best_val_loss = val_losses[0] best_models[0] = deepcopy(model) if avg_val_metric > best_f1_macro: best_f1_macro = avg_val_metric best_models[1] = deepcopy(model) # Save best teachers if val_losses[2] < best_val_loss_t: best_val_loss_t = val_losses[2] best_teachers[0] = deepcopy(model) if avg_val_metric_t > best_f1_macro_t: best_f1_macro_t = avg_val_metric_t best_teachers[1] = deepcopy(model) # Test best models for i, (model, teacher) in enumerate(zip(best_models, best_teachers)): test_losses, metrics, metrics_t = eval_mt(model, teacher, test_loader, criterion, n_classes, metric_fn) print('#### Testing ####') print('Test Loss: ', test_losses) for key, val in metrics.items(): print(f'Test {key}: {np.mean(val)}') for key, val in metrics_t.items(): print(f'Teacher Test {key}: {np.mean(val)}') # save metrics and model torch.save(model.state_dict(), os.path.join(run_dir, f'model_{i}.pth')) np.save(os.path.join(run_dir, f'metrics_{i}'), metrics) torch.save(teacher.state_dict(), os.path.join(run_dir, f'teacher_{i}.pth')) np.save(os.path.join(run_dir, f'teacher_metrics_{i}'), metrics) # jsonify metrics and write to json as well for manual inspection js = {} for key, val in metrics.items(): if not np.ndim(val) == 0: js[key] = val.tolist() else: js[key] = val json.dump(js, open(os.path.join(run_dir, f'metrics_{i}.json'), 'w')) js = {} for key, val in metrics_t.items(): if not np.ndim(val) == 0: js[key] = val.tolist() else: js[key] = val json.dump( js, open(os.path.join(run_dir, f'teacher_metrics_{i}.json'), 'w')) json.dump(config, open(os.path.join(run_dir, f'config.json'), 'w'))
def run(config): seed = config['seed'] random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) exp_dir = get_experiment_dir(config) run_dir = os.path.join(exp_dir, 'seed_{}'.format(config['seed'])) # tensorboard logger writer = SummaryWriter(run_dir) # get data loaders and metrics function if config['dataset'] == 'openmic': (train_loader, val_loader, test_loader), (full_dataset, train_inds) = get_openmic_loaders(config) n_classes = 20 metric_fn = evaluate.metrics.metric_fn_openmic elif config['dataset'] == 'sonyc': (train_loader, val_loader, test_loader), train_dataset = get_sonyc_loaders(config) if config['coarse']: n_classes = 8 else: n_classes = 23 metric_fn = evaluate.metrics.metric_fn_sonycust # Randomly remove labels if 'label_drop_rate' in config: label_drop_rate = config['label_drop_rate'] drop_mask = np.random.rand(*train_dataset.Y_mask.shape) drop_mask = train_dataset.Y_mask + drop_mask train_dataset.Y_mask = drop_mask > (1 + label_drop_rate) # hyper params hparams = config['hparams'] lr = hparams['lr'] wd = hparams['wd'] model_params = { 'drop_rate': hparams['dropout'], 'n_classes': n_classes, 'n_layers': hparams['n_layers'] } num_epochs = hparams['num_epochs'] prune_thres = hparams['prune_thres'] batch_size = hparams['batch_size'] # initialize models model = create_model(model_params) # initialize criterion and optimizer criterion = nn.BCELoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd) # initialize best metric variables best_models = [None, None] best_val_loss = 100000.0 best_f1_macro = -1.0 # teacher training loop for epoch in tqdm(range(num_epochs)): # drop learning rate every 30 epochs if (epoch > 0) and (epoch % 30 == 0): for param_group in optimizer.param_groups: param_group['lr'] = lr * 0.5 lr = lr * 0.5 # first train treating all missing labels as negatives train_loss = trainer_baseline(model, train_loader, optimizer, criterion, baseline_type=0) print('#### Training ####') print('Loss: {}'.format(train_loss)) val_loss, metrics = eval_baseline(model, val_loader, criterion, n_classes, metric_fn, baseline_type=1) val_metric = 'F1_macro' if config[ 'dataset'] == 'openmic' else 'auprc_macro' avg_val_metric = np.mean(metrics[val_metric]) print('#### Validation ####') print('Loss: {}\t Macro F1 score: {}'.format(val_loss, avg_val_metric)) # log to tensorboard writer.add_scalar("train/loss", train_loss, epoch) writer.add_scalar("val/loss_loss", val_loss, epoch) writer.add_scalar(f"val/{val_metric}", avg_val_metric, epoch) #Save best models if val_loss < best_val_loss: best_val_loss = val_loss best_models[0] = deepcopy(model) if avg_val_metric > best_f1_macro: best_f1_macro = avg_val_metric best_models[1] = deepcopy(model) # Perform label pruning if config['dataset'] == 'openmic': X = full_dataset.X[train_inds] Y_mask = full_dataset.Y_mask[train_inds] X_dataset = TensorDataset( torch.tensor(X, requires_grad=False, dtype=torch.float32)) loader = DataLoader(X_dataset, batch_size) all_predictions = forward(best_models[0], loader, n_classes) new_mask = get_enhanced_labels(Y_mask, all_predictions, prune_thres) full_dataset.Y_mask[train_inds] = new_mask if config['dataset'] == 'sonyc': X = train_dataset.X Y_mask = train_dataset.Y_mask X_dataset = TensorDataset( torch.tensor(X, requires_grad=False, dtype=torch.float32)) loader = DataLoader(X_dataset, batch_size) all_predictions = forward(best_models[0], loader, n_classes) new_mask = get_enhanced_labels(Y_mask, all_predictions, prune_thres) train_dataset.Y_mask = new_mask # Retrain with pruned labels # initialize models model = create_model(model_params) # initialize optimizer optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd) # initialize best metric variables best_models = [None, None] best_val_loss = 100000.0 best_f1_macro = -1.0 for epoch in tqdm(range(num_epochs)): # drop learning rate every 30 epochs if (epoch > 0) and (epoch % 30 == 0): for param_group in optimizer.param_groups: param_group['lr'] = lr * 0.5 lr = lr * 0.5 # train with new mask train_loss = trainer_baseline(model, train_loader, optimizer, criterion, baseline_type=1) print('#### Training ####') print('Loss: {}'.format(train_loss)) val_loss, metrics = eval_baseline(model, val_loader, criterion, n_classes, metric_fn, baseline_type=1) val_metric = 'F1_macro' if config[ 'dataset'] == 'openmic' else 'auprc_macro' avg_val_metric = np.mean(metrics[val_metric]) print('#### Validation ####') print('Loss: {}\t Macro F1 score: {}'.format(val_loss, avg_val_metric)) # log to tensorboard writer.add_scalar("train/loss", train_loss, epoch) writer.add_scalar("val/loss_loss", val_loss, epoch) writer.add_scalar(f"val/{val_metric}", avg_val_metric, epoch) #Save best models if val_loss < best_val_loss: best_val_loss = val_loss best_models[0] = deepcopy(model) if avg_val_metric > best_f1_macro: best_f1_macro = avg_val_metric best_models[1] = deepcopy(model) # Test best models for i, model in enumerate(best_models): test_loss, metrics = eval_baseline(model, test_loader, criterion, n_classes, metric_fn, baseline_type=1) print('#### Testing ####') print('Test Loss: ', test_loss) for key, val in metrics.items(): print(f'Test {key}: {np.mean(val)}') # save metrics and model torch.save(model.state_dict(), os.path.join(run_dir, f'model_{i}.pth')) np.save(os.path.join(run_dir, f'metrics_{i}'), metrics) # jsonify metrics and write to json as well for manual inspection js = {} for key, val in metrics.items(): if not np.ndim(val) == 0: js[key] = val.tolist() else: js[key] = val json.dump(js, open(os.path.join(run_dir, f'metrics_{i}.json'), 'w'))
def run(config): seed = config['seed'] random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) exp_dir = get_experiment_dir(config) base_type = config['type'] run_dir = os.path.join(exp_dir, 'seed_{}'.format(config['seed'])) # tensorboard logger writer = SummaryWriter(run_dir) # get data loaders and metrics function if config['dataset'] == 'openmic': (train_loader, val_loader, test_loader), _ = get_openmic_loaders(config) n_classes = 20 metric_fn = evaluate.metrics.metric_fn_sonycust elif config['dataset'] == 'sonyc': (train_loader, val_loader, test_loader), _ = get_sonyc_loaders(config) if config['coarse']: n_classes = 8 else: n_classes = 23 metric_fn = evaluate.metrics.metric_fn_sonycust # hyper params hparams = config['hparams'] lr = hparams['lr'] wd = hparams['wd'] model_params = {'drop_rate':hparams['dropout'], 'n_classes':n_classes, 'n_layers':hparams['n_layers']} num_epochs = hparams['num_epochs'] # initialize models model = create_model(model_params) # initialize criterion and optimizer criterion = nn.BCELoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd) # initialize best metric variables best_models = [None, None] best_val_loss = 100000.0 best_f1_macro = -1.0 # training loop for epoch in tqdm(range(num_epochs)): # drop learning rate every 30 epochs if (epoch > 0) and (epoch % 30 == 0): for param_group in optimizer.param_groups: param_group['lr'] = lr * 0.5 lr = lr * 0.5 train_loss = trainer_baseline(model, train_loader, optimizer, criterion, base_type) print('#### Training ####') print('Loss: {}'.format(train_loss)) val_loss, metrics = eval_baseline(model, val_loader, criterion, n_classes, metric_fn, baseline_type=1) # val_metric = 'F1_macro' if config['dataset'] == 'openmic' else 'auprc_macro' val_metric = 'auprc_macro' avg_val_metric = np.mean(metrics[val_metric]) print('#### Validation ####') print('Loss: {}\t Macro F1 score: {}'.format(val_loss, avg_val_metric)) # log to tensorboard writer.add_scalar("train/loss", train_loss, epoch) writer.add_scalar("val/loss", val_loss, epoch) writer.add_scalar(f"val/{val_metric}", avg_val_metric, epoch) #Save best models if val_loss < best_val_loss: best_val_loss = val_loss best_models[0] = deepcopy(model) if avg_val_metric > best_f1_macro: best_f1_macro = avg_val_metric best_models[1] = deepcopy(model) # Test best models for i, model in enumerate(best_models): test_loss, metrics = eval_baseline(model, test_loader, criterion, n_classes, metric_fn, baseline_type=1) print('#### Testing ####') print('Test Loss: ', test_loss) for key, val in metrics.items(): print(f'Test {key}: {np.mean(val)}') # save metrics and model torch.save(model.state_dict(), os.path.join(run_dir, f'model_{i}.pth')) np.save(os.path.join(run_dir, f'metrics_{i}'), metrics) # jsonify metrics and write to json as well for manual inspection js = {} for key, val in metrics.items(): if not np.ndim(val) == 0: js[key] = val.tolist() else: js[key] = val json.dump(js, open(os.path.join(run_dir, f'metrics_{i}.json'), 'w'))