def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        engine = sqlEngine()
        columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date']
        ttm_cash_flow = get_fin_consolidated_statements_pit(FinCashFlowTTM,
                                                            [FinCashFlowTTM.net_operate_cash_flow,
                                                             # 经营活动现金流量净额
                                                             FinCashFlowTTM.cash_and_equivalents_at_end,
                                                             # 期末现金及现金等价物余额
                                                             ], dates=[trade_date])
        for column in columns:
            if column in list(ttm_cash_flow.keys()):
                ttm_cash_flow = ttm_cash_flow.drop(column, axis=1)

        ttm_income = get_fin_consolidated_statements_pit(FinIncomeTTM,
                                                         [FinIncomeTTM.operating_cost,  # 营业成本
                                                          FinIncomeTTM.operating_revenue,  # 营业收入
                                                          FinIncomeTTM.total_operating_revenue,  # 营业总收入
                                                          ], dates=[trade_date])
        for column in columns:
            if column in list(ttm_income.keys()):
                ttm_income = ttm_income.drop(column, axis=1)

        ttm_balance = get_fin_consolidated_statements_pit(FinBalanceTTM,
                                                          [FinBalanceTTM.account_receivable,  # 应收账款
                                                           FinBalanceTTM.bill_receivable,  # 应收票据
                                                           FinBalanceTTM.advance_payment,  # 预付款项
                                                           FinBalanceTTM.inventories,  # 存货
                                                           FinBalanceTTM.total_current_assets,  # 流动资产合计
                                                           FinBalanceTTM.fixed_assets_net,  # 固定资产
                                                           FinBalanceTTM.construction_materials,  # 工程物资
                                                           FinBalanceTTM.constru_in_process,  # 在建工程
                                                           FinBalanceTTM.total_assets,  # 资产总计
                                                           FinBalanceTTM.advance_peceipts,  # 预收款项
                                                           FinBalanceTTM.accounts_payable,  # 应付账款
                                                           FinBalanceTTM.notes_payable,  # 应付票据
                                                           FinBalanceTTM.total_owner_equities,  # 所有者权益(或股东权益)合计
                                                           ], dates=[trade_date])
        for column in columns:
            if column in list(ttm_balance.keys()):
                ttm_balance = ttm_balance.drop(column, axis=1)

        ttm_operation_capacity = pd.merge(ttm_cash_flow, ttm_income, on='security_code')
        ttm_operation_capacity = pd.merge(ttm_balance, ttm_operation_capacity, on='security_code')
        return ttm_operation_capacity
예제 #2
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]
        engine = sqlEngine()
        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceMRQ,
            [
                BalanceMRQ.TOTALNONCASSETS,
                BalanceMRQ.TOTASSET,
                BalanceMRQ.TOTALNONCLIAB,
                BalanceMRQ.LONGBORR,
                BalanceMRQ.INTAASSET,
                # BalanceMRQ.DEVEEXPE,
                BalanceMRQ.GOODWILL,
                BalanceMRQ.FIXEDASSENET,
                BalanceMRQ.ENGIMATE,
                BalanceMRQ.CONSPROG,
                BalanceMRQ.RIGHAGGR,
                BalanceMRQ.TOTCURRASSET,
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(col, axis=1)
        balance_sets = balance_sets.rename(
            columns={
                'TOTALNONCASSETS': 'total_non_current_assets',  # 非流动资产合计
                'TOTASSET': 'total_assets',  # 资产总计
                'TOTALNONCLIAB': 'total_non_current_liability',  # 非流动负债合计
                'LONGBORR': 'longterm_loan',  # 长期借款
                'INTAASSET': 'intangible_assets',  # 无形资产
                # 'DEVEEXPE': 'development_expenditure',  # 开发支出
                'GOODWILL': 'good_will',  # 商誉
                'FIXEDASSENET': 'fixed_assets',  # 固定资产
                'ENGIMATE': 'construction_materials',  # 工程物资
                'CONSPROG': 'constru_in_process',  # 在建工程
                'RIGHAGGR': 'total_owner_equities',  # 股东权益合计
                'TOTCURRASSET': 'total_current_assets',  # 流动资产合计
            })

        return balance_sets
예제 #3
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        trade_date_pre_year = self.get_trade_date(trade_date, 1)
        trade_date_pre_year_2 = self.get_trade_date(trade_date, 2)
        trade_date_pre_year_3 = self.get_trade_date(trade_date, 3)
        trade_date_pre_year_4 = self.get_trade_date(trade_date, 4)
        trade_date_pre_year_5 = self.get_trade_date(trade_date, 5)

        engine = sqlEngine()
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]
        # report data
        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceReport,
            [
                BalanceReport.TOTASSET,  # 总资产(资产合计)
                BalanceReport.RIGHAGGR,  # 股东权益合计
            ],
            dates=[trade_date])

        if len(balance_sets) <= 0 or balance_sets is None:
            balance_sets = pd.DataFrame({
                'security_code': [],
                'TOTASSET': [],
                'RIGHAGGR': []
            })

        for column in columns:
            if column in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(column, axis=1)
        balance_sets = balance_sets.rename(
            columns={
                'TOTASSET': 'total_assets',  # 资产总计
                'RIGHAGGR': 'total_owner_equities',  # 股东权益合计
            })

        balance_sets_pre_year = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceReport,
            [
                BalanceReport.TOTASSET,  # 总资产(资产合计)
                BalanceReport.RIGHAGGR,  # 股东权益合计
            ],
            dates=[trade_date_pre_year])
        if len(balance_sets_pre_year) <= 0 or balance_sets_pre_year is None:
            balance_sets_pre_year = pd.DataFrame({
                'security_code': [],
                'TOTASSET': [],
                'RIGHAGGR': []
            })

        for column in columns:
            if column in list(balance_sets_pre_year.keys()):
                balance_sets_pre_year = balance_sets_pre_year.drop(column,
                                                                   axis=1)
        balance_sets_pre_year = balance_sets_pre_year.rename(
            columns={
                "TOTASSET": "total_assets_pre_year",
                "RIGHAGGR": "total_owner_equities_pre_year"
            })

        balance_sets = pd.merge(balance_sets,
                                balance_sets_pre_year,
                                on='security_code')
        # print('get_balabce_sets')

        # ttm 计算
        ttm_factor_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM,
            [
                IncomeTTM.BIZINCO,  # 营业收入
                IncomeTTM.PERPROFIT,  # 营业利润
                IncomeTTM.TOTPROFIT,  # 利润总额
                IncomeTTM.NETPROFIT,  # 净利润
                IncomeTTM.BIZCOST,  # 营业成本
                IncomeTTM.PARENETP
            ],  # 归属于母公司所有者的净利润
            dates=[trade_date])

        if len(ttm_factor_sets) <= 0 or ttm_factor_sets is None:
            ttm_factor_sets = pd.DataFrame({
                'security_code': [],
                'BIZINCO': [],
                'PERPROFIT': [],
                'TOTPROFIT': [],
                'NETPROFIT': [],
                'BIZCOST': [],
                'PARENETP': []
            })

        for column in columns:
            if column in list(ttm_factor_sets.keys()):
                ttm_factor_sets = ttm_factor_sets.drop(column, axis=1)

        ttm_cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM,
            [
                CashFlowTTM.FINNETCFLOW,  # 筹资活动产生的现金流量净额
                CashFlowTTM.MANANETR,  # 经营活动产生的现金流量净额
                CashFlowTTM.INVNETCASHFLOW,  # 投资活动产生的现金流量净额
                CashFlowTTM.CASHNETI,  # 现金及现金等价物的净增加额
            ],
            dates=[trade_date])

        if len(ttm_cash_flow_sets) <= 0 or ttm_cash_flow_sets is None:
            ttm_cash_flow_sets = pd.DataFrame({
                'security_code': [],
                'FINNETCFLOW': [],
                'MANANETR': [],
                'INVNETCASHFLOW': [],
                'CASHNETI': []
            })

        for column in columns:
            if column in list(ttm_cash_flow_sets.keys()):
                ttm_cash_flow_sets = ttm_cash_flow_sets.drop(column, axis=1)

        ttm_indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorTTM, [
                IndicatorTTM.NPCUT,
            ], dates=[trade_date])

        if len(ttm_indicator_sets) <= 0 or ttm_indicator_sets is None:
            ttm_indicator_sets = pd.DataFrame({
                'security_code': [],
                'NPCUT': []
            })

        for column in columns:
            if column in list(ttm_indicator_sets.keys()):
                ttm_indicator_sets = ttm_indicator_sets.drop(column, axis=1)

        ttm_indicator_sets = ttm_indicator_sets.rename(
            columns={'NPCUT': 'ni_attr_p_cut'})

        # field_key = ttm_cash_flow_sets.keys()
        # for i in field_key:
        #     ttm_factor_sets[i] = ttm_cash_flow_sets[i]
        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_cash_flow_sets,
                                   how='outer',
                                   on='security_code')
        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_indicator_sets,
                                   how='outer',
                                   on='security_code')

        ttm_factor_sets = ttm_factor_sets.rename(
            columns={
                "BIZINCO": "operating_revenue",
                "PERPROFIT": "operating_profit",
                "TOTPROFIT": "total_profit",
                "NETPROFIT": "net_profit",
                "BIZCOST": "operating_cost",
                "PARENETP": "np_parent_company_owners",
                "FINNETCFLOW": "net_finance_cash_flow",
                "MANANETR": "net_operate_cash_flow",
                "INVNETCASHFLOW": "net_invest_cash_flow",
                'CASHNETI': 'n_change_in_cash'
            })

        ttm_income_sets_pre = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM,
            [
                IncomeTTM.BIZINCO,  # 营业收入
                IncomeTTM.PERPROFIT,  # 营业利润
                IncomeTTM.TOTPROFIT,  # 利润总额
                IncomeTTM.NETPROFIT,  # 净利润
                IncomeTTM.BIZCOST,  # 营业成本
                IncomeTTM.PARENETP  # 归属于母公司所有者的净利润
            ],
            dates=[trade_date_pre_year])

        if len(ttm_income_sets_pre) <= 0 or ttm_income_sets_pre is None:
            ttm_income_sets_pre = pd.DataFrame({
                'security_code': [],
                'BIZINCO': [],
                'PERPROFIT': [],
                'TOTPROFIT': [],
                'NETPROFIT': [],
                'BIZCOST': [],
                'PARENETP': []
            })

        for column in columns:
            if column in list(ttm_income_sets_pre.keys()):
                ttm_income_sets_pre = ttm_income_sets_pre.drop(column, axis=1)

        ttm_factor_sets_pre = ttm_income_sets_pre.rename(
            columns={
                "BIZINCO": "operating_revenue_pre_year",
                "PERPROFIT": "operating_profit_pre_year",
                "TOTPROFIT": "total_profit_pre_year",
                "NETPROFIT": "net_profit_pre_year",
                "BIZCOST": "operating_cost_pre_year",
                "PARENETP": "np_parent_company_owners_pre_year",
            })

        ttm_indicator_sets_pre = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorTTM, [
                IndicatorTTM.NPCUT,
            ], dates=[trade_date_pre_year])

        if len(ttm_indicator_sets_pre) <= 0 or ttm_indicator_sets_pre is None:
            ttm_indicator_sets_pre = pd.DataFrame({
                'security_code': [],
                'NPCUT': []
            })

        for column in columns:
            if column in list(ttm_indicator_sets_pre.keys()):
                ttm_indicator_sets_pre = ttm_indicator_sets_pre.drop(column,
                                                                     axis=1)
        ttm_indicator_sets_pre = ttm_indicator_sets_pre.rename(
            columns={'NPCUT': 'ni_attr_p_cut_pre'})

        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_factor_sets_pre,
                                   how='outer',
                                   on='security_code')
        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_indicator_sets_pre,
                                   how='outer',
                                   on='security_code')

        ttm_cash_flow_sets_pre = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM,
            [
                CashFlowTTM.FINNETCFLOW,
                # 筹资活动产生的现金流量净额
                CashFlowTTM.MANANETR,  # 经营活动产生的现金流量净额
                CashFlowTTM.INVNETCASHFLOW,
                # 投资活动产生的现金流量净额
                CashFlowTTM.CASHNETI,  # 现金及现金等价物的净增加额
            ],
            dates=[trade_date_pre_year])

        if len(ttm_cash_flow_sets_pre) <= 0 or ttm_cash_flow_sets_pre is None:
            ttm_cash_flow_sets_pre = pd.DataFrame({
                'security_code': [],
                'FINNETCFLOW': [],
                'MANANETR': [],
                'INVNETCASHFLOW': [],
                'CASHNETI': []
            })

        for column in columns:
            if column in list(ttm_cash_flow_sets_pre.keys()):
                ttm_cash_flow_sets_pre = ttm_cash_flow_sets_pre.drop(column,
                                                                     axis=1)

        ttm_cash_flow_sets_pre = ttm_cash_flow_sets_pre.rename(
            columns={
                "FINNETCFLOW": "net_finance_cash_flow_pre_year",
                "MANANETR": "net_operate_cash_flow_pre_year",
                "INVNETCASHFLOW": "net_invest_cash_flow_pre_year",
                'CASHNETI': 'n_change_in_cash_pre_year',
            })

        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_cash_flow_sets_pre,
                                   how='outer',
                                   on='security_code')
        # print('get_ttm_factor_sets_pre')

        # ttm 连续
        ttm_factor_sets_pre_year_2 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.NETPROFIT,
                IncomeTTM.BIZINCO,
                IncomeTTM.BIZCOST,
            ],
            dates=[trade_date_pre_year_2])

        if len(ttm_factor_sets_pre_year_2
               ) <= 0 or ttm_factor_sets_pre_year_2 is None:
            ttm_factor_sets_pre_year_2 = pd.DataFrame({
                'security_code': [],
                'NETPROFIT': [],
                'BIZINCO': [],
                'BIZCOST': []
            })

        for column in columns:
            if column in list(ttm_factor_sets_pre_year_2.keys()):
                ttm_factor_sets_pre_year_2 = ttm_factor_sets_pre_year_2.drop(
                    column, axis=1)

        ttm_factor_sets_pre_year_2 = ttm_factor_sets_pre_year_2.rename(
            columns={
                "BIZINCO": "operating_revenue_pre_year_2",
                "BIZCOST": "operating_cost_pre_year_2",
                "NETPROFIT": "net_profit_pre_year_2",
            })
        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_factor_sets_pre_year_2,
                                   how='outer',
                                   on="security_code")
        # field_key = ttm_factor_sets_pre_year_2.keys()
        # for i in field_key:
        #     ttm_factor_sets[i] = ttm_factor_sets_pre_year_2[i]
        # print('get_ttm_factor_sets_2')

        ttm_factor_sets_pre_year_3 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.NETPROFIT,
                IncomeTTM.BIZINCO,
                IncomeTTM.BIZCOST,
            ],
            dates=[trade_date_pre_year_3])

        if len(ttm_factor_sets_pre_year_3
               ) <= 0 or ttm_factor_sets_pre_year_3 is None:
            ttm_factor_sets_pre_year_3 = pd.DataFrame({
                'security_code': [],
                'NETPROFIT': [],
                'BIZINCO': [],
                'BIZCOST': []
            })

        for column in columns:
            if column in list(ttm_factor_sets_pre_year_3.keys()):
                ttm_factor_sets_pre_year_3 = ttm_factor_sets_pre_year_3.drop(
                    column, axis=1)
        ttm_factor_sets_pre_year_3 = ttm_factor_sets_pre_year_3.rename(
            columns={
                "BIZINCO": "operating_revenue_pre_year_3",
                "BIZCOST": "operating_cost_pre_year_3",
                "NETPROFIT": "net_profit_pre_year_3",
            })
        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_factor_sets_pre_year_3,
                                   how='outer',
                                   on="security_code")
        # field_key = ttm_factor_sets_pre_year_3.keys()
        # for i in field_key:
        #     ttm_factor_sets[i] = ttm_factor_sets_pre_year_3[i]
        # print('get_ttm_factor_sets_3')

        ttm_factor_sets_pre_year_4 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.NETPROFIT,
                IncomeTTM.BIZINCO,
                IncomeTTM.BIZCOST,
            ],
            dates=[trade_date_pre_year_4])
        if len(ttm_factor_sets_pre_year_4
               ) <= 0 or ttm_factor_sets_pre_year_4 is None:
            ttm_factor_sets_pre_year_4 = pd.DataFrame({
                'security_code': [],
                'NETPROFIT': [],
                'BIZINCO': [],
                'BIZCOST': []
            })

        for column in columns:
            if column in list(ttm_factor_sets_pre_year_4.keys()):
                ttm_factor_sets_pre_year_4 = ttm_factor_sets_pre_year_4.drop(
                    column, axis=1)
        ttm_factor_sets_pre_year_4 = ttm_factor_sets_pre_year_4.rename(
            columns={
                "BIZINCO": "operating_revenue_pre_year_4",
                "BIZCOST": "operating_cost_pre_year_4",
                "NETPROFIT": "net_profit_pre_year_4",
            })
        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_factor_sets_pre_year_4,
                                   how='outer',
                                   on="security_code")
        # field_key = ttm_factor_sets_pre_year_4.keys()
        # for i in field_key:
        #     ttm_factor_sets[i] = ttm_factor_sets_pre_year_4[i]
        # print('get_ttm_factor_sets_4')

        ttm_factor_sets_pre_year_5 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.NETPROFIT,
                IncomeTTM.BIZINCO,
                IncomeTTM.BIZCOST,
            ],
            dates=[trade_date_pre_year_5])
        if len(ttm_factor_sets_pre_year_5
               ) <= 0 or ttm_factor_sets_pre_year_5 is None:
            ttm_factor_sets_pre_year_5 = pd.DataFrame({
                'security_code': [],
                'NETPROFIT': [],
                'BIZINCO': [],
                'BIZCOST': []
            })

        for column in columns:
            if column in list(ttm_factor_sets_pre_year_5.keys()):
                ttm_factor_sets_pre_year_5 = ttm_factor_sets_pre_year_5.drop(
                    column, axis=1)
        ttm_factor_sets_pre_year_5 = ttm_factor_sets_pre_year_5.rename(
            columns={
                "BIZINCO": "operating_revenue_pre_year_5",
                "BIZCOST": "operating_cost_pre_year_5",
                "NETPROFIT": "net_profit_pre_year_5",
            })

        ttm_factor_sets = pd.merge(ttm_factor_sets,
                                   ttm_factor_sets_pre_year_5,
                                   how='outer',
                                   on="security_code")
        # field_key = ttm_factor_sets_pre_year_5.keys()
        # for i in field_key:
        #     ttm_factor_sets[i] = ttm_factor_sets_pre_year_5[i]
        # print('get_ttm_factor_sets_5')

        growth_sets = pd.merge(ttm_factor_sets,
                               balance_sets,
                               how='outer',
                               on='security_code')
        return growth_sets
예제 #4
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date']
        engine = sqlEngine()
        cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowMRQ,
                                                                         [CashFlowMRQ.FINALCASHBALA,
                                                                          ], dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_sets.keys()):
                cash_flow_sets = cash_flow_sets.drop(col, axis=1)
        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceMRQ,
                                                                       [BalanceMRQ.SHORTTERMBORR,
                                                                        BalanceMRQ.DUENONCLIAB,
                                                                        BalanceMRQ.LONGBORR,
                                                                        BalanceMRQ.BDSPAYA,
                                                                        BalanceMRQ.INTEPAYA,
                                                                        BalanceMRQ.PARESHARRIGH,
                                                                        BalanceMRQ.TOTASSET,
                                                                        BalanceMRQ.FIXEDASSECLEATOT,
                                                                        BalanceMRQ.TOTLIAB,
                                                                        BalanceMRQ.RIGHAGGR,  # 股东权益合计
                                                                        BalanceMRQ.INTAASSET,
                                                                        # BalanceMRQ.DEVEEXPE,
                                                                        BalanceMRQ.GOODWILL,
                                                                        BalanceMRQ.LOGPREPEXPE,
                                                                        BalanceMRQ.DEFETAXASSET,
                                                                        BalanceMRQ.MINYSHARRIGH,
                                                                        BalanceMRQ.TOTCURRASSET,  # 流动资产合计
                                                                        BalanceMRQ.TOTALCURRLIAB,  # 流动负债合计
                                                                        BalanceMRQ.RESE,  # 盈余公积
                                                                        BalanceMRQ.UNDIPROF,  # 未分配利润
                                                                        BalanceMRQ.CURFDS,  # 货币资金
                                                                        BalanceMRQ.ACCOPAYA,  # 应付帐款
                                                                        BalanceMRQ.ADVAPAYM,  # 预收款项
                                                                        BalanceMRQ.NOTESPAYA,  # 应付票据
                                                                        BalanceMRQ.INTEPAYA,  # 应付利息
                                                                        BalanceMRQ.TOTALNONCLIAB,  # 非流动负债合计
                                                                        ], dates=[trade_date])
        for col in columns:
            if col in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(col, axis=1)
        balance_sets = balance_sets.rename(columns={
            'SHORTTERMBORR': 'shortterm_loan',  # 短期借款
            'DUENONCLIAB': 'non_current_liability_in_one_year',  # 一年内到期的非流动负债
            'LONGBORR': 'longterm_loan',  # 长期借款
            'BDSPAYA': 'bonds_payable',  # 应付债券
            'INTEPAYA': 'interest_payable',  # 应付利息
        })

        # indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorMRQ,
        #                                                                  [IndicatorMRQ.FCFF,
        #                                                                   IndicatorMRQ.FCFE,
        #                                                                   IndicatorMRQ.NEGAL,
        #                                                                   IndicatorMRQ.NOPI,
        #                                                                   IndicatorMRQ.WORKCAP,
        #                                                                   IndicatorMRQ.RETAINEDEAR,
        #                                                                   IndicatorMRQ.NDEBT,
        #                                                                   IndicatorMRQ.NONINTCURLIABS,
        #                                                                   IndicatorMRQ.NONINTNONCURLIAB,
        #                                                                   # IndicatorMRQ.CURDEPANDAMOR,
        #                                                                   IndicatorMRQ.TOTIC,
        #                                                                   IndicatorMRQ.EBIT,
        #                                                                   ], dates=[trade_date])
        # for col in columns:
        #     if col in list(indicator_sets.keys()):
        #         indicator_sets = indicator_sets.drop(col, axis=1)

        income_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeMRQ,
                                                                      [IncomeMRQ.INCOTAXEXPE,
                                                                       IncomeMRQ.BIZTOTCOST,  # 营业总成本
                                                                       IncomeMRQ.BIZTOTINCO,  # 营业总收入
                                                                       ], dates=[trade_date])
        for col in columns:
            if col in list(income_sets.keys()):
                income_sets = income_sets.drop(col, axis=1)

        tp_detivation = pd.merge(cash_flow_sets, balance_sets, how='outer', on='security_code')
        # tp_detivation = pd.merge(indicator_sets, tp_detivation, how='outer', on='security_code')
        tp_detivation = pd.merge(income_sets, tp_detivation, how='outer', on='security_code')

        # balance_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceTTM,
        #                                                                    [BalanceTTM.MINYSHARRIGH,
        #                                                                    ], dates=[trade_date]).drop(columns, axis=1)
        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeTTM,
                                                                          [IncomeTTM.BIZTOTINCO,
                                                                           IncomeTTM.BIZTOTCOST,
                                                                           IncomeTTM.BIZINCO,
                                                                           IncomeTTM.SALESEXPE,
                                                                           IncomeTTM.MANAEXPE,
                                                                           IncomeTTM.FINEXPE,
                                                                           # IncomeTTM.INTEEXPE,
                                                                           IncomeTTM.ASSEIMPALOSS,
                                                                           IncomeTTM.PERPROFIT,
                                                                           IncomeTTM.TOTPROFIT,
                                                                           IncomeTTM.NETPROFIT,
                                                                           IncomeTTM.PARENETP,
                                                                           IncomeTTM.BIZTAX,
                                                                           IncomeTTM.NONOREVE,
                                                                           IncomeTTM.NONOEXPE,
                                                                           IncomeTTM.MINYSHARRIGH,
                                                                           IncomeTTM.INCOTAXEXPE,
                                                                           ], dates=[trade_date])
        for col in columns:
            if col in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(col, axis=1)
        income_ttm_sets = income_ttm_sets.rename(columns={'MINYSHARRIGH': 'minority_profit'})

        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowTTM,
                                                                             [CashFlowTTM.MANANETR,
                                                                              CashFlowTTM.LABORGETCASH,
                                                                              CashFlowTTM.INVNETCASHFLOW,
                                                                              CashFlowTTM.FINNETCFLOW,
                                                                              CashFlowTTM.CASHNETI,
                                                                              # CashFlowTTM.INTEEXPE
                                                                              ], dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1)

        # indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorTTM,
        #                                                                      [IndicatorTTM.OPGPMARGIN,
        #                                                                       IndicatorTTM.NPCUT,
        #                                                                       IndicatorTTM.NVALCHGIT,
        #                                                                       IndicatorTTM.EBITDA,
        #                                                                       IndicatorTTM.EBIT,
        #                                                                       IndicatorTTM.EBITFORP,
        #                                                                       ], dates=[trade_date])
        # for col in columns:
        #     if col in list(indicator_ttm_sets.keys()):
        #         indicator_ttm_sets = indicator_ttm_sets.drop(col, axis=1)

        ttm_derivation = pd.merge(income_ttm_sets, cash_flow_ttm_sets, how='outer', on='security_code')
        # ttm_derivation = pd.merge(indicator_ttm_sets, ttm_derivation, how='outer', on='security_code')

        return tp_detivation, ttm_derivation
예제 #5
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        engine = sqlEngine()
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]
        ttm_cash_flow = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM, [
                CashFlowTTM.MANANETR,
                CashFlowTTM.FINALCASHBALA,
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(ttm_cash_flow.keys()):
                ttm_cash_flow = ttm_cash_flow.drop(column, axis=1)
        ttm_cash_flow = ttm_cash_flow.rename(
            columns={
                'MANANETR': 'net_operate_cash_flow',  # 经营活动现金流量净额
                'FINALCASHBALA': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
            })

        ttm_income = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.BIZCOST,
                IncomeTTM.BIZINCO,
                IncomeTTM.BIZTOTINCO,
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(ttm_income.keys()):
                ttm_income = ttm_income.drop(column, axis=1)
        ttm_income = ttm_income.rename(
            columns={
                'BIZCOST': 'operating_cost',  # 营业成本
                'BIZINCO': 'operating_revenue',  # 营业收入
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
            })

        ttm_balance = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceTTM, [
                BalanceTTM.ACCORECE,
                BalanceTTM.NOTESRECE,
                BalanceTTM.PREP,
                BalanceTTM.INVE,
                BalanceTTM.TOTCURRASSET,
                BalanceTTM.FIXEDASSENET,
                BalanceTTM.ENGIMATE,
                BalanceTTM.CONSPROG,
                BalanceTTM.TOTASSET,
                BalanceTTM.ADVAPAYM,
                BalanceTTM.ACCOPAYA,
                BalanceTTM.DERILIAB,
                BalanceTTM.RIGHAGGR,
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(ttm_balance.keys()):
                ttm_balance = ttm_balance.drop(column, axis=1)
        ttm_balance = ttm_balance.rename(
            columns={
                'ACCORECE': 'account_receivable',  # 应收账款
                'NOTESRECE': 'bill_receivable',  # 应收票据
                'PREP': 'advance_payment',  # 预付款项
                'INVE': 'inventories',  # 存货
                'TOTCURRASSET': 'total_current_assets',  # 流动资产合计
                'FIXEDASSENET': 'fixed_assets',  # 固定资产
                'ENGIMATE': 'construction_materials',  # 工程物资
                'CONSPROG': 'constru_in_process',  # 在建工程
                'TOTASSET': 'total_assets',  # 资产总计
                'ADVAPAYM': 'advance_peceipts',  # 预收款项
                'ACCOPAYA': 'accounts_payable',  # 应付账款
                'DERILIAB': 'notes_payable',  # 应付票据
                'RIGHAGGR': 'total_owner_equities',
            })

        ttm_operation_capacity = pd.merge(ttm_cash_flow,
                                          ttm_income,
                                          on='security_code')
        ttm_operation_capacity = pd.merge(ttm_balance,
                                          ttm_operation_capacity,
                                          on='security_code')
        return ttm_operation_capacity
예제 #6
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        trade_date_pre_year = self.get_trade_date(trade_date, 1)
        trade_date_pre_year_2 = self.get_trade_date(trade_date, 2)
        trade_date_pre_year_3 = self.get_trade_date(trade_date, 3)
        trade_date_pre_year_4 = self.get_trade_date(trade_date, 4)
        trade_date_pre_year_5 = self.get_trade_date(trade_date, 5)

        engine = sqlEngine()
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]

        # Report Data
        cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowReport, [
                CashFlowReport.LABORGETCASH,
                CashFlowReport.FINALCASHBALA,
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(cash_flow_sets.keys()):
                cash_flow_sets = cash_flow_sets.drop(column, axis=1)
        cash_flow_sets = cash_flow_sets.rename(
            columns={
                'LABORGETCASH':
                'goods_sale_and_service_render_cash',  # 销售商品、提供劳务收到的现金
                'FINALCASHBALA': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
            })

        income_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport, [
                IncomeReport.BIZTOTINCO,
                IncomeReport.BIZINCO,
                IncomeReport.PERPROFIT,
                IncomeReport.PARENETP,
                IncomeReport.NETPROFIT,
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(income_sets.keys()):
                income_sets = income_sets.drop(column, axis=1)
        income_sets = income_sets.rename(
            columns={
                'NETPROFIT': 'net_profit',  # 净利润
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
                'BIZINCO': 'operating_revenue',  # 营业收入
                'PERPROFIT': 'operating_profit',  # 营业利润
                'PARENETP': 'np_parent_company_owners',  # 归属于母公司所有者的净利润
            })

        indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorReport,
            [
                IndicatorReport.NETPROFITCUT,
                # 扣除非经常损益后的净利润
                IndicatorReport.MGTEXPRT
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(indicator_sets.keys()):
                indicator_sets = indicator_sets.drop(column, axis=1)
        indicator_sets = indicator_sets.rename(
            columns={
                'NETPROFITCUT': 'adjusted_profit',  # 扣除非经常损益后的净利润
            })

        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceReport, [
                BalanceReport.PARESHARRIGH,
            ], dates=[trade_date])
        for column in columns:
            if column in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(column, axis=1)
        balance_sets = balance_sets.rename(columns={
            'PARESHARRIGH':
            'equities_parent_company_owners',  # 归属于母公司股东权益合计
        })

        income_sets_pre_year_1 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport,
            [
                IncomeReport.BIZINCO,  # 营业收入
                IncomeReport.NETPROFIT,  # 净利润
            ],
            dates=[trade_date_pre_year])
        for column in columns:
            if column in list(income_sets_pre_year_1.keys()):
                income_sets_pre_year_1 = income_sets_pre_year_1.drop(column,
                                                                     axis=1)
        income_sets_pre_year_1 = income_sets_pre_year_1.rename(
            columns={
                'NETPROFIT': 'net_profit_pre_year_1',  # 净利润
                'BIZINCO': 'operating_revenue_pre_year_1',
                # 营业收入
            })

        income_sets_pre_year_2 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport, [
                IncomeReport.BIZINCO,
                IncomeReport.NETPROFIT,
            ],
            dates=[trade_date_pre_year_2])
        for column in columns:
            if column in list(income_sets_pre_year_2.keys()):
                income_sets_pre_year_2 = income_sets_pre_year_2.drop(column,
                                                                     axis=1)
        income_sets_pre_year_2 = income_sets_pre_year_2.rename(
            columns={
                'NETPROFIT': 'net_profit_pre_year_2',  # 净利润
                'BIZINCO': 'operating_revenue_pre_year_2',
                # 营业收入
            })

        income_sets_pre_year_3 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport, [
                IncomeReport.BIZINCO,
                IncomeReport.NETPROFIT,
            ],
            dates=[trade_date_pre_year_3])
        for column in columns:
            if column in list(income_sets_pre_year_3.keys()):
                income_sets_pre_year_3 = income_sets_pre_year_3.drop(column,
                                                                     axis=1)
        income_sets_pre_year_3 = income_sets_pre_year_3.rename(
            columns={
                'NETPROFIT': 'net_profit_pre_year_3',  # 净利润
                'BIZINCO': 'operating_revenue_pre_year_3',
                # 营业收入
            })

        income_sets_pre_year_4 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport, [
                IncomeReport.BIZINCO,
                IncomeReport.NETPROFIT,
            ],
            dates=[trade_date_pre_year_4])
        for column in columns:
            if column in list(income_sets_pre_year_4.keys()):
                income_sets_pre_year_4 = income_sets_pre_year_4.drop(column,
                                                                     axis=1)
        income_sets_pre_year_4 = income_sets_pre_year_4.rename(
            columns={
                'NETPROFIT': 'net_profit_pre_year_4',  # 净利润
                'BIZINCO': 'operating_revenue_pre_year_4',
                # 营业收入
            })

        tp_earning = pd.merge(cash_flow_sets,
                              income_sets,
                              how='outer',
                              on='security_code')
        tp_earning = pd.merge(indicator_sets,
                              tp_earning,
                              how='outer',
                              on='security_code')
        tp_earning = pd.merge(balance_sets,
                              tp_earning,
                              how='outer',
                              on='security_code')
        tp_earning = pd.merge(income_sets_pre_year_1,
                              tp_earning,
                              how='outer',
                              on='security_code')
        tp_earning = pd.merge(income_sets_pre_year_2,
                              tp_earning,
                              how='outer',
                              on='security_code')
        tp_earning = pd.merge(income_sets_pre_year_3,
                              tp_earning,
                              how='outer',
                              on='security_code')
        tp_earning = pd.merge(income_sets_pre_year_4,
                              tp_earning,
                              how='outer',
                              on='security_code')

        # MRQ
        balance_mrq_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceMRQ,
            [
                BalanceMRQ.TOTASSET,  # 资产总计
                BalanceMRQ.PARESHARRIGH,  # 归属于母公司股东权益合计
                BalanceMRQ.RIGHAGGR,  # 所有者权益(或股东权益)合计
                BalanceMRQ.LONGBORR,  # 长期借款
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(balance_mrq_sets.keys()):
                balance_mrq_sets = balance_mrq_sets.drop(column, axis=1)
        balance_mrq_sets = balance_mrq_sets.rename(
            columns={
                'TOTASSET': 'total_assets_mrq',
                'PARESHARRIGH': 'equities_parent_company_owners_mrq',
                # 归属于母公司股东权益合计
                'RIGHAGGR': 'total_owner_equities_mrq',  # 所有者权益(或股东权益)合计
                'LONGBORR': 'longterm_loan_mrq',  # 长期借款
            })

        balance_mrq_sets_pre = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceMRQ,
            [
                BalanceMRQ.TOTASSET,  # 资产总计
                BalanceMRQ.RIGHAGGR,  # 所有者权益(或股东权益)合计
                BalanceMRQ.LONGBORR,  # 长期借款
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(balance_mrq_sets_pre.keys()):
                balance_mrq_sets_pre = balance_mrq_sets_pre.drop(column,
                                                                 axis=1)
        balance_mrq_sets_pre = balance_mrq_sets_pre.rename(
            columns={
                'TOTASSET': 'total_assets_mrq_pre',
                'RIGHAGGR': 'total_owner_equities_mrq_pre',
                # 所有者权益(或股东权益)合计
                'LONGBORR': 'longterm_loan_mrq_pre',  # 长期借款
            })

        # TTM Data
        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM, [
                CashFlowTTM.FINNETCFLOW,
            ], dates=[trade_date])
        for column in columns:
            if column in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(column, axis=1)
        cash_flow_ttm_sets = cash_flow_ttm_sets.rename(
            columns={'FINNETCFLOW': 'net_finance_cash_flow'})

        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM,
            [
                IncomeTTM.BIZINCO,  # 营业收入
                IncomeTTM.NETPROFIT,  # 净利润
                IncomeTTM.MANAEXPE,  # 管理费用
                IncomeTTM.BIZTOTINCO,  # 营业总收入
                IncomeTTM.TOTPROFIT,  # 利润总额
                IncomeTTM.FINEXPE,  # 财务费用
                IncomeTTM.INTEINCO,  # 利息收入
                IncomeTTM.SALESEXPE,  # 销售费用
                IncomeTTM.BIZTOTCOST,  # 营业总成本
                IncomeTTM.PERPROFIT,  # 营业利润
                IncomeTTM.PARENETP,  # 归属于母公司所有者的净利润
                IncomeTTM.BIZCOST,  # 营业成本
                IncomeTTM.ASSOINVEPROF,  # 对联营企业和合营企业的投资收益
                IncomeTTM.BIZTAX,  # 营业税金及附加
                IncomeTTM.ASSEIMPALOSS,  # 资产减值损失
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(column, axis=1)
        income_ttm_sets = income_ttm_sets.rename(
            columns={
                'BIZINCO': 'operating_revenue',  # 营业收入
                'NETPROFIT': 'net_profit',  # 净利润
                'MANAEXPE': 'administration_expense',  # 管理费用
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
                'TOTPROFIT': 'total_profit',  # 利润总额
                'FINEXPE': 'financial_expense',  # 财务费用
                'INTEINCO': 'interest_income',  # 利息收入
                'SALESEXPE': 'sale_expense',  # 销售费用
                'BIZTOTCOST': 'total_operating_cost',  # 营业总成本
                'PERPROFIT': 'operating_profit',  # 营业利润
                'PARENETP': 'np_parent_company_owners',  # 归属于母公司所有者的净利润
                'BIZCOST': 'operating_cost',  # 营业成本
                'ASSOINVEPROF': 'invest_income_associates',  # 对联营企业和合营企业的投资收益
                'BIZTAX': 'operating_tax_surcharges',  # 营业税金及附加
                'ASSEIMPALOSS': 'asset_impairment_loss',  # 资产减值损失
            })

        balance_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceTTM,
            [
                BalanceTTM.TOTASSET,  # 资产总计
                BalanceTTM.RIGHAGGR,  # 所有者权益(或股东权益)合计
                BalanceTTM.PARESHARRIGH,  # 归属于母公司股东权益合计
            ],
            dates=[trade_date])
        for column in columns:
            if column in list(balance_ttm_sets.keys()):
                balance_ttm_sets = balance_ttm_sets.drop(column, axis=1)
        balance_ttm_sets = balance_ttm_sets.rename(
            columns={
                'PARESHARRIGH':
                'equities_parent_company_owners',  # 归属于母公司股东权益合计
                'RIGHAGGR': 'total_owner_equities',  # 所有者权益(或股东权益)合计
                'TOTASSET': 'total_assets',  # 资产总计
            })

        income_ttm_sets_pre_year_1 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.BIZINCO,
                IncomeTTM.NETPROFIT,
            ],
            dates=[trade_date_pre_year])
        for column in columns:
            if column in list(income_ttm_sets_pre_year_1.keys()):
                income_ttm_sets_pre_year_1 = income_ttm_sets_pre_year_1.drop(
                    column, axis=1)
        income_ttm_sets_pre_year_1 = income_ttm_sets_pre_year_1.rename(
            columns={
                'BIZINCO': 'operating_revenue_pre_year_1',  # 营业收入
                'NETPROFIT': 'net_profit_pre_year_1',  # 净利润
            })

        income_ttm_sets_pre_year_2 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.BIZINCO,
                IncomeTTM.NETPROFIT,
            ],
            dates=[trade_date_pre_year_2])
        for column in columns:
            if column in list(income_ttm_sets_pre_year_2.keys()):
                income_ttm_sets_pre_year_2 = income_ttm_sets_pre_year_2.drop(
                    column, axis=1)
        income_ttm_sets_pre_year_2 = income_ttm_sets_pre_year_2.rename(
            columns={
                'BIZINCO': 'operating_revenue_pre_year_2',  # 营业收入
                'NETPROFIT': 'net_profit_pre_year_2',  # 净利润
            })

        income_ttm_sets_pre_year_3 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.BIZINCO,
                IncomeTTM.NETPROFIT,
            ],
            dates=[trade_date_pre_year_3])
        for column in columns:
            if column in list(income_ttm_sets_pre_year_3.keys()):
                income_ttm_sets_pre_year_3 = income_ttm_sets_pre_year_3.drop(
                    column, axis=1)
        income_ttm_sets_pre_year_3 = income_ttm_sets_pre_year_3.rename(
            columns={
                'BIZINCO': 'operating_revenue_pre_year_3',  # 营业收入
                'NETPROFIT': 'net_profit_pre_year_3',  # 净利润
            })

        income_ttm_sets_pre_year_4 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.BIZINCO,
                IncomeTTM.NETPROFIT,
            ],
            dates=[trade_date_pre_year_4])
        for column in columns:
            if column in list(income_ttm_sets_pre_year_4.keys()):
                income_ttm_sets_pre_year_4 = income_ttm_sets_pre_year_4.drop(
                    column, axis=1)
        income_ttm_sets_pre_year_4 = income_ttm_sets_pre_year_4.rename(
            columns={
                'BIZINCO': 'operating_revenue_pre_year_4',  # 营业收入
                'NETPROFIT': 'net_profit_pre_year_4',  # 净利润
            })

        # indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorTTM,
        #                                                                      [IndicatorTTM.ROIC,   # 投入资本回报率
        #                                                                       ], dates=[trade_date]).drop(columns, axis=1)
        #
        # indicator_ttm_sets = indicator_ttm_sets.rename(columns={'ROIC': '',
        #                                                         })

        ttm_earning = pd.merge(income_ttm_sets,
                               balance_ttm_sets,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               cash_flow_ttm_sets,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               income_ttm_sets_pre_year_1,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               income_ttm_sets_pre_year_2,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               income_ttm_sets_pre_year_3,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               income_ttm_sets_pre_year_4,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               balance_mrq_sets,
                               how='outer',
                               on='security_code')
        ttm_earning = pd.merge(ttm_earning,
                               balance_mrq_sets_pre,
                               how='outer',
                               on='security_code')

        balance_con_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceTTM,
            [
                BalanceTTM.TOTASSET,  # 资产总计
                BalanceTTM.RIGHAGGR,  # 所有者权益(或股东权益)合计
            ],
            dates=[
                trade_date,
                trade_date_pre_year,
                trade_date_pre_year_2,
                trade_date_pre_year_3,
                trade_date_pre_year_4,
            ])
        for column in columns:
            if column in list(balance_con_sets.keys()):
                balance_con_sets = balance_con_sets.drop(column, axis=1)
        balance_con_sets = balance_con_sets.groupby(['security_code'])
        balance_con_sets = balance_con_sets.sum()
        balance_con_sets = balance_con_sets.rename(
            columns={
                'TOTASSET': 'total_assets',
                'RIGHAGGR': 'total_owner_equities'
            })

        # cash_flow_con_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowReport,
        #                                                                      [CashFlowReport.FINALCASHBALA,
        #                                                                   ],
        #                                                                  dates=[trade_date,
        #                                                                         trade_date_pre_year,
        #                                                                         trade_date_pre_year_2,
        #                                                                         trade_date_pre_year_3,
        #                                                                         trade_date_pre_year_4,
        #                                                                         trade_date_pre_year_5,
        #                                                                         ]).drop(columns, axis=1)
        # cash_flow_con_sets = cash_flow_con_sets.groupby(['security_code'])
        # cash_flow_con_sets = cash_flow_con_sets.sum()
        # cash_flow_con_sets = cash_flow_con_sets.rename(columns={'FINALCASHBALA':'cash_and_equivalents_at_end'})

        income_con_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport, [
                IncomeReport.NETPROFIT,
            ],
            dates=[
                trade_date,
                trade_date_pre_year,
                trade_date_pre_year_2,
                trade_date_pre_year_3,
                trade_date_pre_year_4,
                trade_date_pre_year_5,
            ])
        for column in columns:
            if column in list(income_con_sets.keys()):
                income_con_sets = income_con_sets.drop(column, axis=1)
        income_con_sets = income_con_sets.groupby(['security_code'])
        income_con_sets = income_con_sets.sum()
        income_con_sets = income_con_sets.rename(columns={
            'NETPROFIT': 'net_profit'
        }).reset_index()
        ttm_earning_5y = pd.merge(balance_con_sets,
                                  income_con_sets,
                                  how='outer',
                                  on='security_code')

        return tp_earning, ttm_earning, ttm_earning_5y
예제 #7
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        engine = sqlEngine()
        columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date']
        # MRQ data
        balance_mrq_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceMRQ,
                                                                           [BalanceMRQ.BDSPAYA,
                                                                            BalanceMRQ.TOTASSET,
                                                                            BalanceMRQ.TOTALNONCLIAB,
                                                                            BalanceMRQ.TOTCURRASSET,
                                                                            BalanceMRQ.TOTALCURRLIAB,
                                                                            BalanceMRQ.TOTLIAB,
                                                                            BalanceMRQ.FIXEDASSENET,
                                                                            BalanceMRQ.PARESHARRIGH,
                                                                            BalanceMRQ.SHORTTERMBORR,
                                                                            BalanceMRQ.DUENONCLIAB,
                                                                            BalanceMRQ.LONGBORR,
                                                                            BalanceMRQ.BDSPAYA,
                                                                            BalanceMRQ.INTEPAYA,
                                                                            BalanceMRQ.RIGHAGGR,
                                                                            BalanceMRQ.TOTALNONCASSETS,
                                                                            BalanceMRQ.INVE,
                                                                            BalanceMRQ.INTAASSET,
                                                                            BalanceMRQ.DEVEEXPE,
                                                                            BalanceMRQ.GOODWILL,
                                                                            BalanceMRQ.LOGPREPEXPE,
                                                                            BalanceMRQ.DEFETAXASSET,
                                                                            BalanceMRQ.CURFDS,
                                                                            BalanceMRQ.TRADFINASSET,
                                                                            BalanceMRQ.NOTESRECE,
                                                                            BalanceMRQ.ACCORECE,
                                                                            BalanceMRQ.OTHERRECE,
                                                                            ], dates=[trade_date])
        for col in columns:
            if col in list(balance_mrq_sets.keys()):
                balance_mrq_sets = balance_mrq_sets.drop(col, axis=1)

        balance_mrq_sets = balance_mrq_sets.rename(columns={
            'TOTLIAB': 'total_liability',  # 负债合计
            'TOTASSET': 'total_assets',  # 资产总计
            'TOTALCURRLIAB': 'total_current_liability',  # 流动负债合计
            'TOTCURRASSET': 'total_current_assets',  # 流动资产合计
            'INVE': 'inventories',  # 存货
            'CURFDS': 'cash_equivalents',  # 货币资金
            'TRADFINASSET': 'trading_assets',  # 交易性金融资产
            'NOTESRECE': 'bill_receivable',  # 应收票据
            'ACCORECE': 'account_receivable',  # 应收账款
            'OTHERRECE': 'other_receivable',  # 其他应收款
            'PARESHARRIGH': 'equities_parent_company_owners',  # 归属于母公司股东权益合计
            'INTAASSET': 'intangible_assets',  # 无形资产
            'DEVEEXPE': 'development_expenditure',  # 开发支出
            'GOODWILL': 'good_will',  # 商誉
            'LOGPREPEXPE': 'long_deferred_expense',  # 长期待摊费用
            'DEFETAXASSET': 'deferred_tax_assets',  # 递延所得税资产
            'DUENONCLIAB': 'non_current_liability_in_one_year',  # 一年内到期的非流动负债
            'SHORTTERMBORR': 'shortterm_loan',  # 短期借款
            'LONGBORR': 'longterm_loan',  # 长期借款
            'BDSPAYA': 'bonds_payable',  # 应付债券
            'INTEPAYA': 'interest_payable',  # 应付利息
            'TOTALNONCLIAB': 'total_non_current_liability',  # 非流动负债合计
            'TOTALNONCASSETS': 'total_non_current_assets',  # 非流动资产合计
            'FIXEDASSENET': 'fixed_assets',  # 固定资产
            'RIGHAGGR': 'total_owner_equities',  # 所有者权益(或股东权益)合计
            'FINALCASHBALA': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
        })
        cash_flow_mrq_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowMRQ,
                                                                             [CashFlowMRQ.MANANETR,
                                                                              ], dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_mrq_sets.keys()):
                cash_flow_mrq_sets = cash_flow_mrq_sets.drop(col, axis=1)
        cash_flow_mrq_sets = cash_flow_mrq_sets.rename(columns={'MANANETR': 'net_operate_cash_flow_mrq',  # 经营活动现金流量净额
                                                                })

        mrq_solvency = pd.merge(cash_flow_mrq_sets, balance_mrq_sets, on='security_code')

        # ttm data
        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeTTM,
                                                                          [IncomeTTM.TOTPROFIT,
                                                                           IncomeTTM.FINEXPE,
                                                                           IncomeTTM.INTEINCO,
                                                                           ], dates=[trade_date])
        for col in columns:
            if col in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(col, axis=1)
        income_ttm_sets = income_ttm_sets.rename(columns={'TOTPROFIT': 'total_profit',  # 利润总额
                                                          'FINEXPE': 'financial_expense',  # 财务费用
                                                          'INTEINCO': 'interest_income',  # 利息收入
                                                          })

        balance_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceTTM,
                                                                           [
                                                                            BalanceTTM.TOTALCURRLIAB,
                                                                            BalanceTTM.DUENONCLIAB,
                                                                            ], dates=[trade_date])
        for col in columns:
            if col in list(balance_ttm_sets.keys()):
                balance_ttm_sets = balance_ttm_sets.drop(col, axis=1)
        balance_ttm_sets = balance_ttm_sets.rename(columns={
            'TOTALCURRLIAB': 'total_current_liability_ttm',  # 流动负债合计
            'DUENONCLIAB': 'non_current_liability_in_one_year_ttm',  # 一年内到期的非流动负债
        })

        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowTTM,
                                                                             [CashFlowTTM.MANANETR,  # 经营活动现金流量净额
                                                                              CashFlowTTM.FINALCASHBALA,  # 期末现金及现金等价物余额
                                                                              ], dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1)
        cash_flow_ttm_sets = cash_flow_ttm_sets.rename(columns={
            'MANANETR': 'net_operate_cash_flow',  # 经营活动现金流量净额
            'FINALCASHBALA': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
        })

        indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorTTM,
                                                                             [IndicatorTTM.NDEBT,
                                                                              ], dates=[trade_date])
        for col in columns:
            if col in list(indicator_ttm_sets.keys()):
                indicator_ttm_sets = indicator_ttm_sets.drop(col, axis=1)
        indicator_ttm_sets = indicator_ttm_sets.rename(columns={'NDEBT': 'net_liability',  # 净负债
                                                                })

        ttm_solvency = pd.merge(balance_ttm_sets, cash_flow_ttm_sets, how='outer', on="security_code")
        ttm_solvency = pd.merge(ttm_solvency, income_ttm_sets, how='outer', on="security_code")
        ttm_solvency = pd.merge(ttm_solvency, indicator_ttm_sets, how='outer', on="security_code")

        column = ['trade_date']
        valuation_sets = get_fundamentals(query(Valuation.security_code,
                                                Valuation.trade_date,
                                                Valuation.market_cap, )
                                          .filter(Valuation.trade_date.in_([trade_date])))
        for col in column:
            if col in list(valuation_sets.keys()):
                valuation_sets = valuation_sets.drop(col, axis=1)

        tp_solvency = pd.merge(ttm_solvency, valuation_sets, how='outer', on='security_code')
        tp_solvency = pd.merge(tp_solvency, mrq_solvency, how='outer', on='security_code')
        return tp_solvency
예제 #8
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        engine = sqlEngine()
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]

        # Report Data
        cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowReport, [
                CashFlowReport.BIZNETCFLOW,
            ], dates=[trade_date]).drop(columns, axis=1)
        cash_flow_sets = cash_flow_sets.rename(
            columns={
                'BIZNETCFLOW': 'net_operate_cash_flow',  # 经营活动产生的现金流量净额
            })

        income_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport, [
                IncomeReport.TOTPROFIT,
                IncomeReport.NONOREVE,
                IncomeReport.NONOEXPE,
                IncomeReport.BIZTOTCOST,
                IncomeReport.BIZTOTINCO,
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(income_sets.keys()):
                income_sets = income_sets.drop(col, axis=1)
        income_sets = income_sets.rename(
            columns={
                'TOTPROFIT': 'total_profit',  # 利润总额
                'NONOREVE': 'non_operating_revenue',  # 营业外收入
                'NONOEXPE': 'non_operating_expense',  # 营业外支出
                'BIZTOTCOST': 'total_operating_cost',  # 营业总成本
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
            })

        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceReport, [BalanceReport.TOTALCURRLIAB], dates=[trade_date])
        for col in columns:
            if col in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(col, axis=1)
        balance_sets = balance_sets.rename(
            columns={
                'TOTALCURRLIAB': 'total_current_liability',  # 流动负债合计
            })
        tp_revenue_quanlity = pd.merge(cash_flow_sets,
                                       income_sets,
                                       on='security_code')
        tp_revenue_quanlity = pd.merge(balance_sets,
                                       tp_revenue_quanlity,
                                       on='security_code')

        trade_date_pre_year = self.get_trade_date(trade_date, 1)
        trade_date_pre_year_2 = self.get_trade_date(trade_date, 2)
        trade_date_pre_year_3 = self.get_trade_date(trade_date, 3)
        trade_date_pre_year_4 = self.get_trade_date(trade_date, 4)

        income_con_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.NETPROFIT,
            ],
            dates=[
                trade_date,
                trade_date_pre_year,
                trade_date_pre_year_2,
                trade_date_pre_year_3,
                trade_date_pre_year_4,
            ])
        for col in columns:
            if col in list(income_con_sets.keys()):
                income_con_sets = income_con_sets.drop(col, axis=1)
        income_con_sets = income_con_sets.groupby(['security_code'])
        income_con_sets = income_con_sets.sum()
        income_con_sets = income_con_sets.rename(
            columns={'NETPROFIT': 'net_profit_5'})

        # TTM Data
        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM, [
                CashFlowTTM.BIZNETCFLOW,
            ], dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1)
        cash_flow_ttm_sets = cash_flow_ttm_sets.rename(
            columns={
                'BIZNETCFLOW': 'net_operate_cash_flow',  # 经营活动产生的现金流量净额
            })

        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.TOTPROFIT,
                IncomeTTM.NONOREVE,
                IncomeTTM.NONOEXPE,
                IncomeTTM.BIZTOTCOST,
                IncomeTTM.BIZTOTINCO,
                IncomeTTM.PERPROFIT,
                IncomeTTM.NETPROFIT,
                IncomeTTM.BIZINCO,
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(col, axis=1)
        income_ttm_sets = income_ttm_sets.rename(
            columns={
                'TOTPROFIT': 'total_profit',  # 利润总额
                'NONOREVE': 'non_operating_revenue',  # 营业外收入
                'NONOEXPE': 'non_operating_expense',  # 营业外支出
                'BIZTOTCOST': 'total_operating_cost',  # 营业总成本
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
                'PERPROFIT': 'operating_profit',  # 营业利润
                'NETPROFIT': 'net_profit',  # 净利润
                'BIZINCO': 'operating_revenue',  # 营业收入
            })

        balance_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceTTM, [BalanceTTM.TOTALCURRLIAB], dates=[trade_date])
        for col in columns:
            if col in list(balance_ttm_sets.keys()):
                balance_ttm_sets = balance_ttm_sets.drop(col, axis=1)
        balance_ttm_sets = balance_ttm_sets.rename(
            columns={
                'TOTALCURRLIAB': 'total_current_liability',  # 流动负债合计
            })

        column = ['trade_date']
        valuation_sets = get_fundamentals(
            query(
                Valuation.security_code,
                Valuation.trade_date,
                Valuation.market_cap,
            ).filter(Valuation.trade_date.in_([trade_date])))
        for col in column:
            if col in list(valuation_sets.keys()):
                valuation_sets = valuation_sets.drop(col, axis=1)

        indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorTTM, [
                IndicatorTTM.NVALCHGITOTP,
            ], dates=[trade_date])
        for col in columns:
            if col in list(indicator_ttm_sets.keys()):
                indicator_ttm_sets = indicator_ttm_sets.drop(col, axis=1)
        ttm_revenue_quanlity = pd.merge(cash_flow_ttm_sets,
                                        income_ttm_sets,
                                        on='security_code')
        ttm_revenue_quanlity = pd.merge(balance_ttm_sets,
                                        ttm_revenue_quanlity,
                                        on='security_code')
        ttm_revenue_quanlity = pd.merge(valuation_sets,
                                        ttm_revenue_quanlity,
                                        on='security_code')
        ttm_revenue_quanlity = pd.merge(indicator_ttm_sets,
                                        ttm_revenue_quanlity,
                                        on='security_code')
        ttm_revenue_quanlity = pd.merge(income_con_sets,
                                        ttm_revenue_quanlity,
                                        on='security_code')

        valuation_con_sets = get_fundamentals(
            query(
                Valuation.security_code,
                Valuation.trade_date,
                Valuation.market_cap,
                Valuation.circulating_market_cap,
            ).filter(
                Valuation.trade_date.in_([
                    trade_date, trade_date_pre_year, trade_date_pre_year_2,
                    trade_date_pre_year_3, trade_date_pre_year_4
                ])))
        for col in column:
            if col in list(valuation_con_sets.keys()):
                valuation_con_sets = valuation_con_sets.drop(col, axis=1)

        valuation_con_sets = valuation_con_sets.groupby(['security_code'])
        valuation_con_sets = valuation_con_sets.sum()
        valuation_con_sets = valuation_con_sets.rename(
            columns={
                'market_cap': 'market_cap_5',
                'circulating_market_cap': 'circulating_market_cap_5'
            })
        # tp_revenue_quanlity = pd.merge(valuation_con_sets, tp_revenue_quanlity, on='security_code')
        ttm_revenue_quanlity = pd.merge(valuation_con_sets,
                                        ttm_revenue_quanlity,
                                        on='security_code')

        return tp_revenue_quanlity, ttm_revenue_quanlity
예제 #9
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        # 转换时间格式
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        # 读取目前涉及到的因子
        engine = sqlEngine()
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]
        # Report data
        cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowReport,
            [
                CashFlowReport.FINALCASHBALA,  # 期末现金及现金等价物余额
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_sets.keys()):
                cash_flow_sets = cash_flow_sets.drop(col, axis=1)
        cash_flow_sets = cash_flow_sets.rename(
            columns={
                'FINALCASHBALA': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
            })

        income_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeReport,
            [
                IncomeReport.BIZINCO,  # 营业收入
                IncomeReport.BIZTOTINCO,  # 营业总收入
                IncomeReport.PERPROFIT,  # 营业利润
                IncomeReport.DILUTEDEPS,  # 稀释每股收益
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(income_sets.keys()):
                income_sets = income_sets.drop(col, axis=1)
        income_sets = income_sets.rename(
            columns={
                'BIZINCO': 'operating_revenue',  # 营业收入
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
                'PERPROFIT': 'operating_profit',  # 营业利润
                'DILUTEDEPS': 'diluted_eps',  # 稀释每股收益
            })

        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceReport,
            [
                BalanceReport.PARESHARRIGH,  # 归属于母公司的所有者权益
                BalanceReport.CAPISURP,
                BalanceReport.RESE,
                BalanceReport.UNDIPROF,
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(col, axis=1)
        balance_sets = balance_sets.rename(
            columns={
                'PARESHARRIGH': 'total_owner_equities',  # 归属于母公司的所有者权益
                'CAPISURP': 'capital_reserve_fund',  # 资本公积
                'RESE': 'surplus_reserve_fund',  # 盈余公积
                'UNDIPROF': 'retained_profit',  # 未分配利润
            })

        indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorReport,
            [
                IndicatorReport.FCFE,  # 股东自由现金流量
                IndicatorReport.FCFF,  # 企业自由现金流量
                IndicatorReport.EPSBASIC,  # 基本每股收益
                IndicatorReport.DPS,  # 每股股利(税前)
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(indicator_sets.keys()):
                indicator_sets = indicator_sets.drop(col, axis=1)
        indicator_sets = indicator_sets.rename(
            columns={
                'FCFE': 'shareholder_fcfps',  # 股东自由现金流量
                'FCFF': 'enterprise_fcfps',  # 企业自由现金流量
                'EPSBASIC': 'basic_eps',  # 基本每股收益
                'DPS': 'dividend_receivable',  # 每股股利(税前)
            })

        # TTM data
        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM,
            [
                CashFlowTTM.CASHNETI,  # 现金及现金等价物净增加额
                CashFlowTTM.MANANETR,  # 经营活动现金流量净额
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1)
        cash_flow_ttm_sets = cash_flow_ttm_sets.rename(
            columns={
                'CASHNETI': 'cash_equivalent_increase_ttm',  # 现金及现金等价物净增加额
                'MANANETR': 'net_operate_cash_flow_ttm',  # 经营活动现金流量净额
            })

        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM,
            [
                IncomeTTM.PARENETP,  # 归属于母公司所有者的净利润
                IncomeTTM.PERPROFIT,  # 营业利润
                IncomeTTM.BIZINCO,  # 营业收入
                IncomeTTM.BIZTOTINCO,  # 营业总收入
            ],
            dates=[trade_date])
        for col in columns:
            if col in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(col, axis=1)
        income_ttm_sets = income_ttm_sets.rename(
            columns={
                'PARENETP': 'np_parent_company_owners_ttm',  # 归属于母公司所有者的净利润
                'PERPROFIT': 'operating_profit_ttm',  # 营业利润
                'BIZINCO': 'operating_revenue_ttm',  # 营业收入
                'BIZTOTINCO': 'total_operating_revenue_ttm',  # 营业总收入
            })

        column = ['trade_date']
        valuation_data = get_fundamentals(
            query(
                Valuation.security_code,
                Valuation.trade_date,
                Valuation.capitalization,
            ).filter(Valuation.trade_date.in_([trade_date])))
        for col in column:
            if col in list(valuation_data.keys()):
                valuation_data = valuation_data.drop(col, axis=1)

        valuation_sets = pd.merge(cash_flow_sets,
                                  income_sets,
                                  on='security_code').reindex()
        valuation_sets = pd.merge(balance_sets,
                                  valuation_sets,
                                  on='security_code').reindex()
        valuation_sets = pd.merge(indicator_sets,
                                  valuation_sets,
                                  on='security_code').reindex()
        valuation_sets = pd.merge(cash_flow_ttm_sets,
                                  valuation_sets,
                                  on='security_code').reindex()
        valuation_sets = pd.merge(income_ttm_sets,
                                  valuation_sets,
                                  on='security_code').reindex()
        valuation_sets = pd.merge(valuation_data,
                                  valuation_sets,
                                  on='security_code').reindex()

        return valuation_sets
예제 #10
0
    def loading_data(self, trade_date):

        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        engine = sqlEngine()
        trade_date_pre = self.get_trade_date(trade_date, 1, days=30)
        trade_date_1y = self.get_trade_date(trade_date, 1)
        trade_date_3y = self.get_trade_date(trade_date, 3)
        trade_date_4y = self.get_trade_date(trade_date, 4)
        trade_date_5y = self.get_trade_date(trade_date, 5)

        # report data
        columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date']
        balance_report = engine.fetch_fundamentals_pit_extend_company_id(FinBalance,
                                                                         [FinBalance.total_assets,
                                                                          ], dates=[trade_date])
        if len(balance_report) <= 0 or balance_report is None:
            balance_report = pd.DataFrame({'security_code': [], 'total_assets': []})

        for column in columns:
            if column in list(balance_report.keys()):
                balance_report = balance_report.drop(column, axis=1)
        balance_report = balance_report.rename(columns={
            'total_assets': 'total_assets_report',  # 资产总计
        })
        # valuation_report_sets = pd.merge(indicator_sets, balance_report, how='outer', on='security_code')

        # MRQ data
        cash_flow_mrq = engine.fetch_fundamentals_pit_extend_company_id(FinCashFlow,
                                                                        [FinCashFlow.cash_and_equivalents_at_end,
                                                                         ], dates=[trade_date])
        if len(cash_flow_mrq) <= 0 or cash_flow_mrq is None:
            cash_flow_mrq = pd.DataFrame({'security_code': [], 'cash_and_equivalents_at_end': []})

        for column in columns:
            if column in list(cash_flow_mrq.keys()):
                cash_flow_mrq = cash_flow_mrq.drop(column, axis=1)
        cash_flow_mrq = cash_flow_mrq.rename(columns={
            'cash_and_equivalents_at_end': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
        })

        balance_mrq = engine.fetch_fundamentals_pit_extend_company_id(FinBalance,
                                                                      [FinBalance.longterm_loan,  # 短期借款
                                                                       FinBalance.total_assets,  # 资产总计
                                                                       FinBalance.shortterm_loan,  # 短期借款
                                                                       FinBalance.equities_parent_company_owners,
                                                                       # 归属于母公司股东权益合计
                                                                       ], dates=[trade_date])
        if len(balance_mrq) <= 0 or balance_mrq is None:
            balance_mrq = pd.DataFrame(
                {'security_code': [], 'longterm_loan': [], 'total_assets': [], 'shortterm_loan': [],
                 'equities_parent_company_owners': []})
        for column in columns:
            if column in list(balance_mrq.keys()):
                balance_mrq = balance_mrq.drop(column, axis=1)

        balance_mrq = balance_mrq.rename(columns={
            'shortterm_loan': 'shortterm_loan',  # 短期借款
            'longterm_loan': 'longterm_loan',  # 长期借款
            'total_assets': 'total_assets',  # 资产总计
            'equities_parent_company_owners': 'equities_parent_company_owners',  # 归属于母公司股东权益合计
        })
        valuation_mrq = pd.merge(cash_flow_mrq, balance_mrq, on='security_code')

        indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIndicator,
                                                                         [FinIndicator.np_cut,
                                                                          ], dates=[trade_date])
        for col in columns:
            if col in list(indicator_sets.keys()):
                indicator_sets = indicator_sets.drop(col, axis=1)
        # indicator_sets = indicator_sets.rename(columns={'EBIT': 'ebit_mrq'})
        valuation_mrq = pd.merge(indicator_sets, valuation_mrq, how='outer', on='security_code')

        income_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIncome,
                                                                      [FinIncome.income_tax,  # 所得税
                                                                       ], dates=[trade_date])
        for col in columns:
            if col in list(income_sets.keys()):
                income_sets = income_sets.drop(col, axis=1)
        valuation_mrq = pd.merge(income_sets, valuation_mrq, how='outer', on='security_code')

        cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(FinCashFlow,
                                                                         [FinCashFlow.fixed_assets_depreciation,
                                                                          # 固定资产折旧
                                                                          FinCashFlow.intangible_assets_amortization,
                                                                          # 无形资产摊销
                                                                          FinCashFlow.fix_intan_other_asset_acqui_cash,
                                                                          # 购建固定资产、无形资产和其他...
                                                                          FinCashFlow.defferred_expense_amortization,
                                                                          # 长期待摊费用摊销
                                                                          FinCashFlow.borrowing_repayment,  # 偿还债务支付的现金
                                                                          FinCashFlow.cash_from_borrowing,  # 取得借款收到的现金
                                                                          FinCashFlow.cash_from_bonds_issue,
                                                                          # 发行债券所收到的现金
                                                                          ], dates=[trade_date])
        for col in columns:
            if col in list(cash_flow_sets.keys()):
                cash_flow_sets = cash_flow_sets.drop(col, axis=1)
        valuation_mrq = pd.merge(cash_flow_sets, valuation_mrq, how='outer', on='security_code')

        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(FinBalance,
                                                                       [FinBalance.shortterm_loan,
                                                                        FinBalance.total_current_assets,  # 流动资产合计
                                                                        FinBalance.total_current_liability,  # 流动负债合计
                                                                        ], dates=[trade_date])
        for col in columns:
            if col in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(col, axis=1)
        valuation_mrq = pd.merge(balance_sets, valuation_mrq, how='outer', on='security_code')

        balance_sets_pre = engine.fetch_fundamentals_pit_extend_company_id(FinBalance,
                                                                           [FinBalance.total_current_assets,  # 流动资产合计
                                                                            FinBalance.total_current_liability,
                                                                            # 流动负债合计
                                                                            ], dates=[trade_date_pre])

        for col in columns:
            if col in list(balance_sets_pre.keys()):
                balance_sets_pre = balance_sets_pre.drop(col, axis=1)
        balance_sets_pre = balance_sets_pre.rename(columns={
            'total_current_assets': 'total_current_assets_pre',
            'total_current_liability': 'total_current_liability_pre',
        })
        valuation_mrq = pd.merge(balance_sets_pre, valuation_mrq, how='outer', on='security_code')

        # TTM data
        # 总市值合并到TTM数据中,
        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(FinCashFlowTTM,
                                                                             [FinCashFlowTTM.net_operate_cash_flow,
                                                                              ], dates=[trade_date])

        if len(cash_flow_ttm_sets) <= 0 or cash_flow_ttm_sets is None:
            cash_flow_ttm_sets = pd.DataFrame({'security_code': [], 'net_operate_cash_flow': []})

        for column in columns:
            if column in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(column, axis=1)
        cash_flow_ttm_sets = cash_flow_ttm_sets.rename(columns={
            'net_operate_cash_flow': 'net_operate_cash_flow',  # 经营活动现金流量净额
        })

        indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIndicatorTTM,
                                                                             [FinIndicatorTTM.np_cut,
                                                                              ], dates=[trade_date_1y])
        if len(indicator_ttm_sets) <= 0 or indicator_ttm_sets is None:
            indicator_ttm_sets = pd.DataFrame({'security_code': [], 'np_cut': []})

        for column in columns:
            if column in list(indicator_ttm_sets.keys()):
                indicator_ttm_sets = indicator_ttm_sets.drop(column, axis=1)

        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(FinIncomeTTM,
                                                                          [FinIncomeTTM.net_profit,
                                                                           FinIncomeTTM.np_parent_company_owners,
                                                                           FinIncomeTTM.total_operating_revenue,
                                                                           FinIncomeTTM.operating_revenue,
                                                                           FinIncomeTTM.total_profit,
                                                                           ], dates=[trade_date])
        if len(income_ttm_sets) <= 0 or income_ttm_sets is None:
            income_ttm_sets = pd.DataFrame(
                {'security_code': [], 'net_profit': [], 'np_parent_company_owners': [], 'total_operating_revenue': [],
                 'operating_revenue': [], 'total_profit': []})

        for column in columns:
            if column in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(column, axis=1)
        income_ttm_sets = income_ttm_sets.rename(columns={
            'total_profit': 'total_profit',  # 利润总额 ttm
            'net_profit': 'net_profit',  # 净利润
            'np_parent_company_owners': 'np_parent_company_owners',  # 归属于母公司所有者的净利润
            'total_operating_revenue': 'total_operating_revenue',  # 营业总收入
            'operating_revenue': 'operating_revenue',  # 营业收入
        })

        income_ttm_sets_3 = engine.fetch_fundamentals_pit_extend_company_id(FinIncomeTTM,
                                                                            [FinIncomeTTM.np_parent_company_owners,
                                                                             ], dates=[trade_date_3y])
        if len(income_ttm_sets_3) <= 0 or income_ttm_sets_3 is None:
            income_ttm_sets_3 = pd.DataFrame({'security_code': [], 'np_parent_company_owners': []})

        for column in columns:
            if column in list(income_ttm_sets_3.keys()):
                income_ttm_sets_3 = income_ttm_sets_3.drop(column, axis=1)
        income_ttm_sets_3 = income_ttm_sets_3.rename(columns={
            'np_parent_company_owners': 'np_parent_company_owners_3',  # 归属于母公司所有者的净利润
        })

        income_ttm_sets_5 = engine.fetch_fundamentals_pit_extend_company_id(FinIncomeTTM,
                                                                            [FinIncomeTTM.np_parent_company_owners,
                                                                             ], dates=[trade_date_5y])
        if len(income_ttm_sets_5) <= 0 or income_ttm_sets_5 is None:
            income_ttm_sets_5 = pd.DataFrame({'security_code': [], 'np_parent_company_owners': []})

        for column in columns:
            if column in list(income_ttm_sets_5.keys()):
                income_ttm_sets_5 = income_ttm_sets_5.drop(column, axis=1)
        income_ttm_sets_5 = income_ttm_sets_5.rename(columns={
            'np_parent_company_owners': 'np_parent_company_owners_5',  # 归属于母公司所有者的净利润
        })

        valuation_ttm_sets = pd.merge(cash_flow_ttm_sets, income_ttm_sets, how='outer', on='security_code')
        valuation_ttm_sets = pd.merge(valuation_ttm_sets, indicator_ttm_sets, how='outer', on='security_code')
        valuation_ttm_sets = pd.merge(valuation_ttm_sets, income_ttm_sets_3, how='outer', on='security_code')
        valuation_ttm_sets = pd.merge(valuation_ttm_sets, income_ttm_sets_5, how='outer', on='security_code')

        # 流通市值,总市值
        column = ['trade_date']
        sk_daily_price_sets = get_fundamentals(query(SkDailyPrice.security_code,
                                                     SkDailyPrice.trade_date,
                                                     SkDailyPrice.tot_market_cap,
                                                     SkDailyPrice.circulating_market_cap
                                                     ).filter(SkDailyPrice.trade_date.in_([trade_date])))
        if len(sk_daily_price_sets) <= 0 or sk_daily_price_sets is None:
            sk_daily_price_sets = pd.DataFrame({'security_code': [],
                                                'tot_market_cap': [],
                                                'circulating_market_cap': []})
        for col in column:
            if col in list(sk_daily_price_sets.keys()):
                sk_daily_price_sets = sk_daily_price_sets.drop(col, axis=1)

        # PS, PE, PB, PCF
        column = ['trade_date']
        valuation_sets = get_fundamentals(query(Valuation.security_code,
                                                Valuation.trade_date,
                                                Valuation.pe,
                                                Valuation.ps,
                                                Valuation.pb,
                                                Valuation.pcf,
                                                ).filter(Valuation.trade_date.in_([trade_date])))
        if len(valuation_sets) <= 0 or valuation_sets is None:
            valuation_sets = pd.DataFrame({'security_code': [],
                                           'pe': [],
                                           'ps': [],
                                           'pb': [],
                                           'pcf': []})
        for col in column:
            if col in list(valuation_sets.keys()):
                valuation_sets = valuation_sets.drop(col, axis=1)

        trade_date_6m = self.get_trade_date(trade_date, 1, 180)
        trade_date_3m = self.get_trade_date(trade_date, 1, 90)
        # trade_date_2m = self.get_trade_date(trade_date, 1, 60)
        trade_date_1m = self.get_trade_date(trade_date, 1, 30)

        pe_set = get_fundamentals(query(Valuation.security_code,
                                        Valuation.trade_date,
                                        Valuation.pe,
                                        ).filter(Valuation.trade_date.in_([trade_date])))
        if len(pe_set) <= 0 or pe_set is None:
            pe_set = pd.DataFrame({'security_code': [], 'pe': []})
        for col in column:
            if col in list(pe_set.keys()):
                pe_set = pe_set.drop(col, axis=1)

        pe_sets_6m = get_fundamentals(query(Valuation.security_code,
                                            Valuation.trade_date,
                                            Valuation.pe)
                                      .filter(Valuation.trade_date.between(trade_date_6m, trade_date)))
        if len(pe_sets_6m) <= 0 or pe_sets_6m is None:
            pe_sets_6m = pd.DataFrame({'security_code': [], 'pe': []})
        for col in column:
            if col in list(pe_sets_6m.keys()):
                pe_sets_6m = pe_sets_6m.drop(col, axis=1)

        pe_sets_6m = pe_sets_6m.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_6m'})

        pe_sets_3m = get_fundamentals(query(Valuation.security_code,
                                            Valuation.trade_date,
                                            Valuation.pe)
                                      .filter(Valuation.trade_date.between(trade_date_3m, trade_date)))

        if len(pe_sets_3m) <= 0 or pe_sets_3m is None:
            pe_sets_3m = pd.DataFrame({'security_code': [], 'pe': []})

        for col in column:
            if col in list(pe_sets_3m.keys()):
                pe_sets_3m = pe_sets_3m.drop(col, axis=1)

        pe_sets_3m = pe_sets_3m.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_3m'})

        pe_sets_2m = get_fundamentals(query(Valuation.security_code,
                                            Valuation.trade_date,
                                            Valuation.pe)
                                      .filter(Valuation.trade_date.between(trade_date_1m, trade_date)))

        if len(pe_sets_2m) <= 0 or pe_sets_2m is None:
            pe_sets_2m = pd.DataFrame({'security_code': [], 'pe': []})

        for col in column:
            if col in list(pe_sets_2m.keys()):
                pe_sets_2m = pe_sets_2m.drop(col, axis=1)

        pe_sets_2m = pe_sets_2m.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_1m'})

        pe_sets_1y = get_fundamentals(query(Valuation.security_code,
                                            Valuation.trade_date,
                                            Valuation.pe)
                                      .filter(Valuation.trade_date.between(trade_date_1y, trade_date)))

        if len(pe_sets_1y) <= 0 or pe_sets_1y is None:
            pe_sets_1y = pd.DataFrame({'security_code': [], 'pe': []})

        for col in column:
            if col in list(pe_sets_1y.keys()):
                pe_sets_1y = pe_sets_1y.drop(col, axis=1)

        pe_sets_1y = pe_sets_1y.groupby('security_code').mean().rename(columns={'pe': 'pe_mean_1y'})

        pe_sets = pd.merge(pe_sets_6m, pe_sets_3m, how='outer', on='security_code')
        pe_sets = pd.merge(pe_sets, pe_sets_2m, how='outer', on='security_code')
        pe_sets = pd.merge(pe_sets, pe_sets_1y, how='outer', on='security_code')
        pe_sets = pd.merge(pe_sets, pe_set, how='outer', on='security_code')

        industry_set = ['801010', '801020', '801030', '801040', '801050', '801080', '801110', '801120', '801130',
                        '801140', '801150', '801160', '801170', '801180', '801200', '801210', '801230', '801710',
                        '801720', '801730', '801740', '801750', '801760', '801770', '801780', '801790', '801880',
                        '801890']
        column_sw = ['trade_date', 'symbol', 'company_id']
        sw_indu = get_fundamentals_extend_internal(query(Industry.trade_date,
                                                         Industry.symbol,
                                                         Industry.isymbol)
                                                   .filter(Industry.trade_date.in_([trade_date])),
                                                   internal_type='symbol')
        for col in column_sw:
            if col in list(sw_indu.keys()):
                sw_indu = sw_indu.drop(col, axis=1)
        sw_indu = sw_indu[sw_indu['isymbol'].isin(industry_set)]
        # valuation_sets = pd.merge(valuation_sets, indicator_sets, how='outer', on='security_code')
        valuation_sets = pd.merge(valuation_sets, balance_report, how='outer', on='security_code')
        valuation_sets = pd.merge(valuation_sets, valuation_mrq, how='outer', on='security_code')
        valuation_sets = pd.merge(valuation_sets, valuation_ttm_sets, how='outer', on='security_code')
        valuation_sets = pd.merge(valuation_sets, sk_daily_price_sets, how='outer', on='security_code')

        # valuation_sets['tot_market_cap'] = valuation_sets['tot_market_cap'] * 10000
        # valuation_sets['circulating_market_cap'] = valuation_sets['circulating_market_cap'] * 10000
        return valuation_sets, sw_indu, pe_sets
예제 #11
0
    def loading_data(self, trade_date):
        """
        获取基础数据
        按天获取当天交易日所有股票的基础数据
        :param trade_date: 交易日
        :return:
        """
        time_array = datetime.strptime(trade_date, "%Y-%m-%d")
        trade_date = datetime.strftime(time_array, '%Y%m%d')
        engine = sqlEngine()
        trade_date_1y = self.get_trade_date(trade_date, 1)
        trade_date_3y = self.get_trade_date(trade_date, 3)
        trade_date_4y = self.get_trade_date(trade_date, 4)
        trade_date_5y = self.get_trade_date(trade_date, 5)

        # report data
        columns = [
            'COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id',
            'trade_date'
        ]
        indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorReport, [
                IndicatorReport.FCFF,
            ], dates=[trade_date])

        if len(indicator_sets) <= 0 or indicator_sets is None:
            indicator_sets = pd.DataFrame({'security_code': [], 'FCFF': []})

        for column in columns:
            if column in list(indicator_sets.keys()):
                indicator_sets = indicator_sets.drop(column, axis=1)
        indicator_sets = indicator_sets.rename(columns={
            'FCFF': 'enterprise_fcfps',  # 企业自由现金流
        })

        balance_sets = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceReport, [
                BalanceReport.TOTASSET,
            ], dates=[trade_date])
        if len(balance_sets) <= 0 or balance_sets is None:
            balance_sets = pd.DataFrame({'security_code': [], 'TOTASSET': []})

        for column in columns:
            if column in list(balance_sets.keys()):
                balance_sets = balance_sets.drop(column, axis=1)
        balance_sets = balance_sets.rename(columns={
            'TOTASSET': 'total_assets_report',  # 资产总计
        })
        valuation_report_sets = pd.merge(indicator_sets,
                                         balance_sets,
                                         how='outer',
                                         on='security_code')

        # MRQ data
        cash_flow_mrq = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowMRQ, [
                CashFlowMRQ.FINALCASHBALA,
            ], dates=[trade_date])
        if len(cash_flow_mrq) <= 0 or cash_flow_mrq is None:
            cash_flow_mrq = pd.DataFrame({
                'security_code': [],
                'FINALCASHBALA': []
            })

        for column in columns:
            if column in list(cash_flow_mrq.keys()):
                cash_flow_mrq = cash_flow_mrq.drop(column, axis=1)
        cash_flow_mrq = cash_flow_mrq.rename(
            columns={
                'FINALCASHBALA': 'cash_and_equivalents_at_end',  # 期末现金及现金等价物余额
            })

        balance_mrq = engine.fetch_fundamentals_pit_extend_company_id(
            BalanceMRQ, [
                BalanceMRQ.LONGBORR,
                BalanceMRQ.TOTASSET,
                BalanceMRQ.SHORTTERMBORR,
                BalanceMRQ.PARESHARRIGH,
            ],
            dates=[trade_date])
        if len(balance_mrq) <= 0 or balance_mrq is None:
            balance_mrq = pd.DataFrame({
                'security_code': [],
                'LONGBORR': [],
                'TOTASSET': [],
                'SHORTTERMBORR': [],
                'PARESHARRIGH': []
            })
        for column in columns:
            if column in list(balance_mrq.keys()):
                balance_mrq = balance_mrq.drop(column, axis=1)

        balance_mrq = balance_mrq.rename(
            columns={
                'SHORTTERMBORR': 'shortterm_loan',  # 短期借款
                'LONGBORR': 'longterm_loan',  # 长期借款
                'TOTASSET': 'total_assets',  # 资产总计
                'PARESHARRIGH':
                'equities_parent_company_owners',  # 归属于母公司股东权益合计
            })
        valuation_mrq = pd.merge(cash_flow_mrq,
                                 balance_mrq,
                                 on='security_code')

        # TTM data
        # 总市值合并到TTM数据中,
        cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            CashFlowTTM, [
                CashFlowTTM.MANANETR,
            ], dates=[trade_date])

        if len(cash_flow_ttm_sets) <= 0 or cash_flow_ttm_sets is None:
            cash_flow_ttm_sets = pd.DataFrame({
                'security_code': [],
                'MANANETR': []
            })

        for column in columns:
            if column in list(cash_flow_ttm_sets.keys()):
                cash_flow_ttm_sets = cash_flow_ttm_sets.drop(column, axis=1)
        cash_flow_ttm_sets = cash_flow_ttm_sets.rename(
            columns={
                'MANANETR': 'net_operate_cash_flow',  # 经营活动现金流量净额
            })

        indicator_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IndicatorTTM, [
                IndicatorTTM.NETPROFITCUT,
            ], dates=[trade_date_1y])
        if len(indicator_ttm_sets) <= 0 or indicator_ttm_sets is None:
            indicator_ttm_sets = pd.DataFrame({
                'security_code': [],
                'NETPROFITCUT': []
            })

        for column in columns:
            if column in list(indicator_ttm_sets.keys()):
                indicator_ttm_sets = indicator_ttm_sets.drop(column, axis=1)
        indicator_ttm_sets = indicator_ttm_sets.rename(
            columns={
                'NETPROFITCUT': 'net_profit_cut_pre',  # 扣除非经常性损益的净利润
            })

        income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.NETPROFIT,
                IncomeTTM.PARENETP,
                IncomeTTM.BIZTOTINCO,
                IncomeTTM.BIZINCO,
                IncomeTTM.TOTPROFIT,
            ],
            dates=[trade_date])
        if len(income_ttm_sets) <= 0 or income_ttm_sets is None:
            income_ttm_sets = pd.DataFrame({
                'security_code': [],
                'NETPROFIT': [],
                'PARENETP': [],
                'BIZTOTINCO': [],
                'BIZINCO': [],
                'TOTPROFIT': []
            })

        for column in columns:
            if column in list(income_ttm_sets.keys()):
                income_ttm_sets = income_ttm_sets.drop(column, axis=1)
        income_ttm_sets = income_ttm_sets.rename(
            columns={
                'TOTPROFIT': 'total_profit',  # 利润总额 ttm
                'NETPROFIT': 'net_profit',  # 净利润
                'PARENETP': 'np_parent_company_owners',  # 归属于母公司所有者的净利润
                'BIZTOTINCO': 'total_operating_revenue',  # 营业总收入
                'BIZINCO': 'operating_revenue',  # 营业收入
            })

        income_ttm_sets_3 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.PARENETP,
            ], dates=[trade_date_3y])
        if len(income_ttm_sets_3) <= 0 or income_ttm_sets_3 is None:
            income_ttm_sets_3 = pd.DataFrame({
                'security_code': [],
                'PARENETP': []
            })

        for column in columns:
            if column in list(income_ttm_sets_3.keys()):
                income_ttm_sets_3 = income_ttm_sets_3.drop(column, axis=1)
        income_ttm_sets_3 = income_ttm_sets_3.rename(
            columns={
                'PARENETP': 'np_parent_company_owners_3',  # 归属于母公司所有者的净利润
            })

        income_ttm_sets_5 = engine.fetch_fundamentals_pit_extend_company_id(
            IncomeTTM, [
                IncomeTTM.PARENETP,
            ], dates=[trade_date_5y])
        if len(income_ttm_sets_5) <= 0 or income_ttm_sets_5 is None:
            income_ttm_sets_5 = pd.DataFrame({
                'security_code': [],
                'PARENETP': []
            })

        for column in columns:
            if column in list(income_ttm_sets_5.keys()):
                income_ttm_sets_5 = income_ttm_sets_5.drop(column, axis=1)
        income_ttm_sets_5 = income_ttm_sets_5.rename(
            columns={
                'PARENETP': 'np_parent_company_owners_5',  # 归属于母公司所有者的净利润
            })

        valuation_ttm_sets = pd.merge(cash_flow_ttm_sets,
                                      income_ttm_sets,
                                      how='outer',
                                      on='security_code')
        valuation_ttm_sets = pd.merge(valuation_ttm_sets,
                                      indicator_ttm_sets,
                                      how='outer',
                                      on='security_code')
        valuation_ttm_sets = pd.merge(valuation_ttm_sets,
                                      income_ttm_sets_3,
                                      how='outer',
                                      on='security_code')
        valuation_ttm_sets = pd.merge(valuation_ttm_sets,
                                      income_ttm_sets_5,
                                      how='outer',
                                      on='security_code')

        # PS, PE, PB, PCF
        column = ['trade_date']
        valuation_sets = get_fundamentals(
            query(Valuation.security_code, Valuation.trade_date, Valuation.pe,
                  Valuation.ps, Valuation.pb, Valuation.pcf,
                  Valuation.market_cap,
                  Valuation.circulating_market_cap).filter(
                      Valuation.trade_date.in_([trade_date])))
        if len(valuation_sets) <= 0 or valuation_sets is None:
            valuation_sets = pd.DataFrame({
                'security_code': [],
                'pe': [],
                'ps': [],
                'pb': [],
                'pcf': [],
                'market_cap': [],
                'circulating_market_cap': []
            })
        for col in column:
            if col in list(valuation_sets.keys()):
                valuation_sets = valuation_sets.drop(col, axis=1)

        trade_date_6m = self.get_trade_date(trade_date, 1, 180)
        trade_date_3m = self.get_trade_date(trade_date, 1, 90)
        # trade_date_2m = self.get_trade_date(trade_date, 1, 60)
        trade_date_1m = self.get_trade_date(trade_date, 1, 20)

        pe_set = get_fundamentals(
            query(
                Valuation.security_code,
                Valuation.trade_date,
                Valuation.pe,
            ).filter(Valuation.trade_date.in_([trade_date])))
        if len(pe_set) <= 0 or pe_set is None:
            pe_set = pd.DataFrame({'security_code': [], 'pe': []})
        for col in column:
            if col in list(pe_set.keys()):
                pe_set = pe_set.drop(col, axis=1)

        pe_sets_6m = get_fundamentals(
            query(Valuation.security_code, Valuation.trade_date,
                  Valuation.pe).filter(
                      Valuation.trade_date.between(trade_date_6m, trade_date)))
        if len(pe_sets_6m) <= 0 or pe_sets_6m is None:
            pe_sets_6m = pd.DataFrame({'security_code': [], 'pe': []})
        for col in column:
            if col in list(pe_sets_6m.keys()):
                pe_sets_6m = pe_sets_6m.drop(col, axis=1)

        pe_sets_6m = pe_sets_6m.groupby('security_code').mean().rename(
            columns={'pe': 'pe_mean_6m'})

        pe_sets_3m = get_fundamentals(
            query(Valuation.security_code, Valuation.trade_date,
                  Valuation.pe).filter(
                      Valuation.trade_date.between(trade_date_3m, trade_date)))

        if len(pe_sets_3m) <= 0 or pe_sets_3m is None:
            pe_sets_3m = pd.DataFrame({'security_code': [], 'pe': []})

        for col in column:
            if col in list(pe_sets_3m.keys()):
                pe_sets_3m = pe_sets_3m.drop(col, axis=1)

        pe_sets_3m = pe_sets_3m.groupby('security_code').mean().rename(
            columns={'pe': 'pe_mean_3m'})

        pe_sets_2m = get_fundamentals(
            query(Valuation.security_code, Valuation.trade_date,
                  Valuation.pe).filter(
                      Valuation.trade_date.between(trade_date_1m, trade_date)))

        if len(pe_sets_2m) <= 0 or pe_sets_2m is None:
            pe_sets_2m = pd.DataFrame({'security_code': [], 'pe': []})

        for col in column:
            if col in list(pe_sets_2m.keys()):
                pe_sets_2m = pe_sets_2m.drop(col, axis=1)

        pe_sets_2m = pe_sets_2m.groupby('security_code').mean().rename(
            columns={'pe': 'pe_mean_1m'})

        pe_sets_1y = get_fundamentals(
            query(Valuation.security_code, Valuation.trade_date,
                  Valuation.pe).filter(
                      Valuation.trade_date.between(trade_date_1y, trade_date)))

        if len(pe_sets_1y) <= 0 or pe_sets_1y is None:
            pe_sets_1y = pd.DataFrame({'security_code': [], 'pe': []})

        for col in column:
            if col in list(pe_sets_1y.keys()):
                pe_sets_1y = pe_sets_1y.drop(col, axis=1)

        pe_sets_1y = pe_sets_1y.groupby('security_code').mean().rename(
            columns={'pe': 'pe_mean_1y'})

        pe_sets = pd.merge(pe_sets_6m,
                           pe_sets_3m,
                           how='outer',
                           on='security_code')
        pe_sets = pd.merge(pe_sets,
                           pe_sets_2m,
                           how='outer',
                           on='security_code')
        pe_sets = pd.merge(pe_sets,
                           pe_sets_1y,
                           how='outer',
                           on='security_code')
        pe_sets = pd.merge(pe_sets, pe_set, how='outer', on='security_code')

        industry_set = [
            '801010', '801020', '801030', '801040', '801050', '801080',
            '801110', '801120', '801130', '801140', '801150', '801160',
            '801170', '801180', '801200', '801210', '801230', '801710',
            '801720', '801730', '801740', '801750', '801760', '801770',
            '801780', '801790', '801880', '801890'
        ]
        column_sw = ['trade_date', 'symbol', 'company_id']
        sw_indu = get_fundamentals_extend_internal(query(
            Industry.trade_date, Industry.symbol,
            Industry.isymbol).filter(Industry.trade_date.in_([trade_date])),
                                                   internal_type='symbol')
        for col in column_sw:
            if col in list(sw_indu.keys()):
                sw_indu = sw_indu.drop(col, axis=1)
        sw_indu = sw_indu[sw_indu['isymbol'].isin(industry_set)]

        valuation_sets = pd.merge(valuation_sets,
                                  valuation_report_sets,
                                  how='outer',
                                  on='security_code')
        valuation_sets = pd.merge(valuation_sets,
                                  valuation_mrq,
                                  how='outer',
                                  on='security_code')
        valuation_sets = pd.merge(valuation_sets,
                                  valuation_ttm_sets,
                                  how='outer',
                                  on='security_code')

        return valuation_sets, sw_indu, pe_sets