예제 #1
0
    def train(self, req_vars):
        prefix_stream = DataStream(self.train_dataset,
                                   iteration_scheme=ShuffledExampleScheme(
                                       self.train_dataset.num_examples))

        if not data.tvt:
            prefix_stream = transformers.TaxiExcludeTrips(
                prefix_stream, self.valid_trips_ids)
        prefix_stream = transformers.TaxiExcludeEmptyTrips(prefix_stream)
        prefix_stream = transformers.TaxiGenerateSplits(
            prefix_stream, max_splits=self.config.max_splits)

        prefix_stream = transformers.taxi_add_datetime(prefix_stream)

        prefix_stream = transformers.balanced_batch(
            prefix_stream,
            key='latitude',
            batch_size=self.config.batch_size,
            batch_sort_size=self.config.batch_sort_size)

        prefix_stream = Padding(prefix_stream,
                                mask_sources=['latitude', 'longitude'])

        candidate_stream = self.candidate_stream(
            self.config.train_candidate_size)

        sources = prefix_stream.sources + tuple(
            'candidate_%s' % k for k in candidate_stream.sources)
        stream = Merge((prefix_stream, candidate_stream), sources)

        stream = transformers.Select(stream, tuple(req_vars))
        # stream = MultiProcessing(stream)
        return stream
예제 #2
0
    def train(self, req_vars):
        prefix_stream = DataStream(self.train_dataset,
                                   iteration_scheme=ShuffledExampleScheme(
                                       self.train_dataset.num_examples))

        if not data.tvt:
            prefix_stream = transformers.TaxiExcludeTrips(
                prefix_stream, self.valid_trips_ids)
        prefix_stream = transformers.TaxiExcludeEmptyTrips(prefix_stream)
        prefix_stream = transformers.TaxiGenerateSplits(
            prefix_stream, max_splits=self.config.max_splits)
        prefix_stream = transformers.taxi_add_datetime(prefix_stream)
        prefix_stream = transformers.taxi_add_first_last_len(
            prefix_stream, self.config.n_begin_end_pts)
        prefix_stream = Batch(prefix_stream,
                              iteration_scheme=ConstantScheme(
                                  self.config.batch_size))

        candidate_stream = self.candidate_stream(
            self.config.train_candidate_size)

        sources = prefix_stream.sources + tuple(
            'candidate_%s' % k for k in candidate_stream.sources)
        stream = Merge((prefix_stream, candidate_stream), sources)
        stream = transformers.Select(stream, tuple(req_vars))
        stream = MultiProcessing(stream)
        return stream
예제 #3
0
    def train(self, req_vars):
        valid = TaxiDataset(self.config.valid_set,
                            'valid.hdf5',
                            sources=('trip_id', ))
        valid_trips_ids = valid.get_data(None, slice(0, valid.num_examples))[0]

        stream = TaxiDataset('train')

        if hasattr(
                self.config,
                'use_cuts_for_training') and self.config.use_cuts_for_training:
            stream = DataStream(stream, iteration_scheme=TaxiTimeCutScheme())
        else:
            stream = DataStream(stream,
                                iteration_scheme=ShuffledExampleScheme(
                                    stream.num_examples))

        stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)
        stream = transformers.TaxiGenerateSplits(
            stream, max_splits=self.config.max_splits)

        stream = transformers.taxi_add_datetime(stream)
        # stream = transformers.taxi_add_first_last_len(stream, self.config.n_begin_end_pts)
        stream = transformers.Select(stream, tuple(req_vars))

        stream = Batch(stream,
                       iteration_scheme=ConstantScheme(self.config.batch_size))

        stream = MultiProcessing(stream)

        return stream
예제 #4
0
    def train(self, req_vars):
        stream = TaxiDataset('train', data.traintest_ds)

        if hasattr(
                self.config,
                'use_cuts_for_training') and self.config.use_cuts_for_training:
            stream = DataStream(stream, iteration_scheme=TaxiTimeCutScheme())
        else:
            stream = DataStream(stream,
                                iteration_scheme=ShuffledExampleScheme(
                                    stream.num_examples))

        if not data.tvt:
            valid = TaxiDataset(data.valid_set,
                                data.valid_ds,
                                sources=('trip_id', ))
            valid_trips_ids = valid.get_data(None,
                                             slice(0, valid.num_examples))[0]
            stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)

        if hasattr(self.config, 'max_splits'):
            stream = transformers.TaxiGenerateSplits(
                stream, max_splits=self.config.max_splits)
        elif not data.tvt:
            stream = transformers.add_destination(stream)

        if hasattr(self.config, 'train_max_len'):
            idx = stream.sources.index('latitude')

            def max_len_filter(x):
                return len(x[idx]) <= self.config.train_max_len

            stream = Filter(stream, max_len_filter)

        stream = transformers.TaxiExcludeEmptyTrips(stream)
        stream = transformers.taxi_add_datetime(stream)
        stream = transformers.Select(
            stream, tuple(v for v in req_vars if not v.endswith('_mask')))

        stream = transformers.balanced_batch(
            stream,
            key='latitude',
            batch_size=self.config.batch_size,
            batch_sort_size=self.config.batch_sort_size)
        stream = Padding(stream, mask_sources=['latitude', 'longitude'])
        stream = transformers.Select(stream, req_vars)
        stream = MultiProcessing(stream)

        return stream
예제 #5
0
    def train(self, req_vars):
        valid = TaxiDataset(self.config.valid_set,
                            'valid.hdf5',
                            sources=('trip_id', ))
        valid_trips_ids = valid.get_data(None, slice(0, valid.num_examples))[0]

        dataset = TaxiDataset('train')

        prefix_stream = DataStream(dataset,
                                   iteration_scheme=TaxiTimeCutScheme(
                                       self.config.num_cuts))
        prefix_stream = transformers.TaxiExcludeTrips(prefix_stream,
                                                      valid_trips_ids)
        prefix_stream = transformers.TaxiGenerateSplits(
            prefix_stream, max_splits=self.config.max_splits)
        prefix_stream = transformers.taxi_add_datetime(prefix_stream)
        prefix_stream = transformers.taxi_add_first_last_len(
            prefix_stream, self.config.n_begin_end_pts)
        prefix_stream = Batch(prefix_stream,
                              iteration_scheme=ConstantScheme(
                                  self.config.batch_size))

        candidate_stream = DataStream(dataset,
                                      iteration_scheme=ShuffledExampleScheme(
                                          dataset.num_examples))
        candidate_stream = transformers.TaxiExcludeTrips(
            candidate_stream, valid_trips_ids)
        candidate_stream = transformers.TaxiExcludeEmptyTrips(candidate_stream)
        candidate_stream = transformers.taxi_add_datetime(candidate_stream)
        candidate_stream = transformers.taxi_add_first_last_len(
            candidate_stream, self.config.n_begin_end_pts)
        candidate_stream = Batch(candidate_stream,
                                 iteration_scheme=ConstantScheme(
                                     self.config.train_candidate_size))

        sources = prefix_stream.sources + tuple(
            'candidate_%s' % k for k in candidate_stream.sources)
        stream = Merge((prefix_stream, candidate_stream), sources)
        stream = transformers.Select(stream, tuple(req_vars))
        stream = MultiProcessing(stream)
        return stream