def _make_args(self, X): batch_size = getattr(self, 'batch_size', None) if batch_size is None: data = itertools.repeat([X]) elif batch_size < 1: raise ValueError('need strictly positive batch size') else: data = iter_minibatches([X], self.batch_size, self.sample_dim) args = ((i, {}) for i in data) return args
def _make_args(self, X, Z): X, Z = cast_array_to_local_type(X), cast_array_to_local_type(Z) batch_size = getattr(self, 'batch_size', None) if batch_size is None: data = itertools.repeat([X, Z]) elif batch_size < 1: raise ValueError('need strictly positive batch size') else: data = iter_minibatches([X, Z], self.batch_size, self.sample_dim) args = ((i, {}) for i in data) return args
def _make_args(self, X, Z): batch_size = getattr(self, 'batch_size', None) if batch_size is None: X, Z = cast_array_to_local_type(X), cast_array_to_local_type(Z) data = itertools.repeat([X, Z]) elif batch_size < 1: raise ValueError('need strictly positive batch size') else: data = iter_minibatches([X, Z], self.batch_size, self.sample_dim) data = ((cast_array_to_local_type(x), cast_array_to_local_type(z)) for x, z in data) args = ((i, {}) for i in data) return args