def train(continueTraining=True): # load train, truth data loadData(imgSize=IMAGE_SIZE) # create model if IMAGE_SIZE == 128: model = createModel_128(inputShape=(IMAGE_SIZE, IMAGE_SIZE, 3), numClasses=10) else: model = createModel_64(inputShape=(IMAGE_SIZE, IMAGE_SIZE, 3), numClasses=10) if continueTraining == True: try: model.load_weights('weight_{0}.hd5'.format(IMAGE_SIZE)) except: print('Weight load exception.') # train for epoch in range(NUM_EPOCH): print('EPOCH={0} : '.format(epoch), end='') x_train, y_true = getBatch(numOfBatch=BATCH_SIZE) loss = model.train_on_batch(x_train, y_true) print('{0:>6.4f} {1:>6.4f}'.format(loss[0], loss[1]), end='\r') if (epoch % NUM_WEIGHTSAVE_PERIOD) == 0: model.save('model_{0}.hd5'.format(IMAGE_SIZE)) model.save_weights('weight_{0}.hd5'.format(IMAGE_SIZE))
def setUp(self): self.data = data.Data(1, live=False) print("Loading Data:", DATA_FILE_NAME) data.loadData(DATA_FILE_NAME) self.backtester = backtest.Backtest(cash=10000, data=self.data, minBrokerFee=1.00, perShareFee=0.0075, simple=True, stateObj=True)
def fit(parameters): # Load the training data D_train = data.loadData(parameters["training_fasta"]) # Iterate through the fasta file for fasta in (os.listdir(parameters["k_mers_path"])): # Get the k-mers of the actual file K = kmers.loadKmers(parameters["k_mers_path"] + "/" + fasta) # Generate the samples matrix (X_train) and the target values (y_train) X_train, y_train = matrix.generateSamplesTargets( D_train, K, parameters["k"]) # Instantiate a linear svm classifier clf = SVC(kernel='linear', C=1, probability=True, random_state=0, cache_size=1000) # Fit the classifier clf.fit(X_train, y_train) # Get index of the separator index = fasta.index(".") # Get he filename file_name = fasta[0:index] # Save the model joblib.dump(clf, parameters["model_path"] + "/" + file_name + ".pkl") # Information message print("Model: " + file_name + ".pkl saved at: " + parameters["model_path"])
def p1_Ridge(): data = loadData() df_x = np.array(data.loc[:, 'b3356':'b4703']) df_y = np.array(data.loc[:, 'GrowthRate']) coef = [] errors = [] alphas = [0.0001, 0.001, 0.1, 1, 10, 100, 1000, 100000] for i in range(len(alphas)): ridge_model = linear_model.Ridge(alpha=alphas[i]) ridge_model.fit(df_x, df_y) scores = cross_validate(ridge_model, df_x, df_y, cv=10, scoring='neg_mean_squared_error') errors.append(np.mean(-scores['test_score'])) coef.append(ridge_model.coef_) errors = np.array(errors) minIndex = np.argmin(errors) model_ridge = linear_model.Ridge(alpha=alphas[minIndex]) model_ridge.fit(df_x, df_y) feature_nozeros = np.count_nonzero(model_ridge.coef_) print('Method:Ridge Regression') print('Number of features that have non-zero coefficients:', feature_nozeros) print('10-fold Cross Validation MSE:', errors) print('Optimal Lambda Value:', alphas[minIndex])
def p1_Lasso(): data = loadData() df_x = np.array(data.loc[:, 'b3356':'b4703']) df_y = np.array(data.loc[:, 'GrowthRate']) coef = [] errors = [] alphas = [1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2] for i in range(len(alphas)): Lasso_model = linear_model.Lasso(alpha=alphas[i], tol=0.001) Lasso_model.fit(df_x, df_y) scores = cross_validate(Lasso_model, df_x, df_y, cv=10, scoring='neg_mean_squared_error') errors.append(np.mean(-scores['test_score'])) coef.append(Lasso_model.coef_) errors = np.array(errors) minIndex = np.argmin(errors) model_lasso = linear_model.Lasso(alpha=alphas[minIndex]) model_lasso.fit(df_x, df_y) feature_zeros = np.count_nonzero(model_lasso.coef_) print('Method:Lasso Regression') print('Number of features that have Non-zero coefficients:', feature_zeros) print('10-fold Cross Validation MSE:', errors) print('Optimal Lambda Value:', alphas[minIndex])
def identifyPerfectMatch(parameters): # Display information print("\nIndentify perfect matches...") # Initialize the results list Results = {} # Get the discriminative motifs Kmers = kmers.loadKmers(str(parameters["k_mers_path"])) # Get the sequence dataset Data = data.loadData(str(parameters["training_fasta"])) # Add the reference sequence Data = data.loadReferenceSequence( Data, str(parameters["refence_sequence_genbank"])) # Iterate through the k-mers for kmer in Kmers: # Display the current motif print("Signature: " + kmer) # Get the current k-mer query = kmer # Check if there is perfect pairwise alignment of the current kmer with each sequence using parallelization informations = Parallel(n_jobs=-1)( delayed(perfectLocalPairwiseSequenceAlignment)(data, query) for data in Data) # Save the informations of each sequence according to the current kmer Results[kmer] = informations # Return the list of dictionary return Results
def classify(inputfile='slpdb.mat', epoch_length=30, make_plot=True, save=True, outputfile='classify.txt'): # Load datas dataset = loadData(inputfile) ECG = groupByEpoch(dataset['ECG'], 250, epoch_length) Resp_in, Resp_out = edr.main(dataset) # Feature dictionary construction d_test = dictionaryInitialization() d_test = dico_construction(ECG, Resp_in, Resp_out, d_test) Xarr_norm = createNormalizedDataframe(d_test) # Predecition model = joblib.load('model.pkl') pred_res = list() for j in range(0, len(ECG)): l = str(model.predict(Xarr_norm[j])[0]) pred_res.append(l) if make_plot: # Plot result plot(pred_res, dataset['labels'], epoch_length) if save: # Write prediction into text file savePredictions(pred_res, outputfile)
def identifyVariations(Results, parameters): # Display information print("\nIndentify variations...") # Get the sequence dataset Data = data.loadData(str(parameters["training_fasta"])) # Add the reference sequence Data = data.loadReferenceSequence( Data, str(parameters["refence_sequence_genbank"])) # Iterate through the actual sequences records for key, records in Results.items(): print("Signature: " + key) # Get the current k-mer query = key # Compute the average position of the k-mers to prune the search for mutated k-mers positions = [] for record in records: if record["position"] != None: positions.append(record["position"]) average_position = int(statistics.mean(positions)) # Compute the pairwise alignment of the amplified motif with each sequence to identify mutated motifs using parallelization informations = Parallel(n_jobs=-1)( delayed(localPairwiseSequenceAlignmentMutatededMotif)( records, data, query, average_position) for data in Data) # Save the updated informations of each sequence according to the current kmer Results[key] = informations # Dictionary of mutated motif (s) and associated postion(s) return Results
def main(): # python neuralNetwork.py <num training data points> alpha = 0.3 layers = [3, 7, 1] iterations = 10 # Generate training data. data.genData(int(sys.argv[1])) train_inputs, train_outputs = data.loadData(layers) # Train network. network = NeuralNetwork(layers) network.train(train_inputs, train_outputs, alpha, iterations) # Generate testing data. data.genData(10000) test_inputs, test_outputs = data.loadData(layers) # Check against testing data. network.numberCorrect(test_inputs, test_outputs)
def make_debug_dict(): train_data = loadData('./sample', True, opt.types, opt.type_filter) out = codecs.open('./umls_dict_debug.txt', 'w', 'UTF-8') with codecs.open('/Users/feili/UMLS/2016AA_Snomed_Meddra/META/MRCONSO.RRF', 'r', 'UTF-8') as fp: for line in fp.readlines(): fields = line.strip().split(u"|") CUI = fields[0] # Unique identifier for concept LAT = fields[1] # Language of term TS = fields[ 2] # Term status, P - Preferred for CUI, S - Non-Preferred LUI = fields[3] # Unique identifier for term STT = fields[4] # String type, PF-Preferred form of term SUI = fields[5] # Unique identifier for string ISPREF = fields[ 6] # Atom status - preferred (Y) or not (N) for this string within this concept AUI = fields[7] # Unique identifier for atom SAUI = fields[8] # Source asserted atom identifier SCUI = fields[9] # Source asserted concept identifier SDUI = fields[10] # Source asserted descriptor identifier SAB = fields[11] # Abbreviated source name TTY = fields[ 12] # Abbreviation for term type in source vocabulary, for example PN (Metathesaurus Preferred Name) or CD (Clinical Drug). CODE = fields[13] # Most useful source asserted identifier STR = fields[14] # String SRL = fields[ 15] # Source restriction level, 0-No additional restrictions; general terms of the license agreement apply, 9-General terms + SNOMED CT Affiliate License in Appendix 2 SUPPRESS = fields[ 16] # Suppressible flag. O: All obsolete content, N: None of the above CVF = fields[ 17] # Content View Flag, Bit field used to flag rows included in Content View. find = False for document in train_data: for entity in document.entities: if CODE in entity.norm_ids: find = True break if find: out.write(line) out.close()
def test(model_name): model = getModel(model_name=model_name) test_loader = dt.loadData(train=False) test_loss = 0 correct = 0 print("\nLoad saved model [", model_name, "]...") if not cfg.pretrained: model.load_state_dict( torch.load(cfg.log_path + model_name + "_cifar10.pt")['model_state_dict']) model.eval() print("Done..!") criterion = nn.CrossEntropyLoss() print("\nStart to test ", model_name, " ...") with torch.no_grad(): for data, target in tqdm(test_loader): data, target = data.to(cfg.device), target.to(cfg.device) if cfg.convert_to_RGB: batch_size, channel, width, height = data.size() data = data.view(batch_size, channel, width, height).expand(batch_size, cfg.converted_channel, width, height) output = model(data) test_loss += criterion(output, target).item() # sum up batch loss pred = output.argmax( dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\tTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n\n'. format(test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
def predict(parameters): # Get the path of the model file model_path = str(parameters["model_path"]) # Get the path of the k-mers file k_mers_path = str(parameters["k_mers_path"]) # Get the testing fasta file file_path = str(parameters["testing_fasta"]) # Get the prediction file path prediction_path = str(parameters["prediction_path"]) # Get the evaluation mode evaluation_mode = str(parameters["evaluation_mode"]) # Load the training data D = data.loadData(file_path) # Get the set of k-mers K = kmers.loadKmers(k_mers_path) # Get the k-mers length k = len(list(K.keys())[0]) # Generate the samples matrix (X) and the target values (y) X, y = matrix.generateSamplesTargets(D, K , k) # Load the classifier clf = joblib.load(model_path) # Predict the sequences y_pred = clf.predict(X) # If evaluation mode is egal to True if evaluation_mode == "True": # If the target values list is empty if len(y) == 0: print("Evaluation cannot be performed because target values are not given") # Else display the classification report else: print("Classification report \n", classification_report(y, y_pred)) # Save the predictions f = open(prediction_path, "w") # Write the header f.write("id,y_pred\n") # Iterate through the predictions for i, y in enumerate(y_pred): # Save the current prediction f.write(D[i][0] + "," + y + "\n") # Close the file f.close() # Displays a confirmation message print("Predictions saved at the path:", prediction_path)
def p2(x): data = loadData() xtest = x #data_left = data.loc[~data.index.isin(data_train.index)] num_iter = 50 predictions = [] for i in range(num_iter): data_train = resample(data, replace=True, n_samples=round(0.7*194),random_state=i) ytrain = data_train.loc[:,'GrowthRate'] xtrain = data_train.loc[:,'b3356':'b4703'] Lasso_model = linear_model.Lasso(alpha = 1e-5,tol = 0.001) Lasso_model.fit(xtrain,ytrain) predict = np.ndarray.tolist(Lasso_model.predict(xtest)) predictions.append(predict) return(predictions)
def main(img_path, db_path): """ Lance la détection de cratères puis le calcul de l'état de libration. Affiche le résultat sur une image avec matplotlib Entrée : - img_path : chemin vers l'image de Lune - db_path : chemin vers la base de données de cratères """ cratereDB = loadData(db_path) moon_original = io.imread(img_path) moon = moon_original.copy() print("Tailles de l'image : ", moon.shape[:2]) codes, crat_infos, yc, xc, R = detection_crateres(moon) if len(codes) > 0: y, x = crat_infos[:, 0], crat_infos[:, 1] names, lat, lon, _ = getDims(cratereDB, codes) print("Liste des cratères renseignés :\n", names) res = trouver_libration(x, y, lon, lat, xc=xc, yc=yc, R=R, theta=0, Dphi=0, Dlambda=0) # On affiche le résultat ax = plt.subplot() moon = draw_final(ax, moon, cratereDB, res, x, y, lon, lat) io.imshow(moon) plt.show() else: print("Vous n'avez renseigné aucun cratère !")
def fit(parameters): # Get the parameters model_path = str(parameters["model_path"]) # Get the path of the k-mers file k_mers_path = str(parameters["k_mers_path"]) # Get the path of the training fasta file file_path = str(parameters["training_fasta"]) # Load the training data D = data.loadData(file_path) # Get the set of k-mers K = kmers.loadKmers(k_mers_path) # Get the k-mers length k = len(list(K.keys())[0]) # Generate the samples matrix (X) and the target values (y) X, y = matrix.generateSamplesTargets(D, K , k) # Instantiate a linear svm classifier clf = svm() # Fit the classifier clf.fit(X, y) # Save the model joblib.dump(clf, model_path) # Displays a confirmation message print("Model saved at the path:", model_path)
def load_train_set(dictionary_reverse): documents = loadData(opt.train_file, False, opt.types, opt.type_filter) train_annotations_dict = {} for document in documents: for gold_entity in document.entities: entity_tokens, _ = preprocess(gold_entity.name, True, True) if len(entity_tokens) == 0: continue entity_key = "" for token in entity_tokens: entity_key += token + "_" if gold_entity.norm_ids[0] in dictionary_reverse: cui_list = dictionary_reverse[gold_entity.norm_ids[0]] for cui in cui_list: setMap(train_annotations_dict, entity_key, cui) return train_annotations_dict
from sklearn.decomposition import NMF from data import loadData, saveData import numpy as np # 最重要的参数是n_components、alpha、l1_ratio、solver nmf = NMF( n_components=128, # k value,默认会保留全部特征 # W H 的初始化方法,'random' | 'nndsvd'(默认) | 'nndsvda' | 'nndsvdar' | 'custom', init=None, solver='cd', # 'cd' | 'mu' # {'frobenius', 'kullback-leibler', 'itakura-saito'}, beta_loss='frobenius', tol=1e-10, # 停止迭代的极限条件 max_iter=200, # 最大迭代次数 random_state=None, alpha=0., # 正则化参数 l1_ratio=0., # 正则化参数 verbose=0, # 冗长模式 shuffle=False # 针对"cd solver" ) trius = loadData(filename='trius.npy') X = np.abs(trius) nmf.fit(X) W = nmf.fit_transform(X) H = nmf.components_ print('reconstruction_err_', nmf.reconstruction_err_) # 损失函数值 print('n_iter_', nmf.n_iter_) # 实际迭代次数 saveData(W, filename='nmf.npy') saveData(H, filename='basis.npy')
import numpy as np from data import loadData, groupByEpoch from models import createNormalizedDataframe from feature_construction import dictionaryInitialization, dico_construction from sklearn.svm import SVC from sklearn.externals import joblib from edr import main # Load datas ECG = np.array([]) labels = np.array([]) binarylabels = np.array([]) for file in os.listdir("traindata"): if file.endswith(".mat"): dataset = loadData('traindata/' + file) ECG = np.append(ECG, dataset['ECG']) Resp_in, Resp_out = main(dataset) labels = np.append(labels, dataset['labels']) binarylabels = np.append(binarylabels, dataset['binarylabels']) X = groupByEpoch(ECG) # Train dictionary construction d_train = dictionaryInitialization() d_train = dico_construction(X, Resp_in, Resp_out, d_train) y = np.array(labels) Xarr_norm = createNormalizedDataframe(d_train) Xarr_norm = np.nan_to_num(Xarr_norm).reshape((len(Xarr_norm), 1)) # Compute model and write to file model = SVC(kernel='linear').fit(Xarr_norm, y)
def main(argv): global server_thread print("Starting %s %s..." % (common.app_name, common.app_version)) print(""" __ / \_ __( )_ _( \_ _( )_ (__________________) """) app = QApplication(argv) network.setup() filtering.setup() # Create extension server. server_thread = extension_server.ExtensionServerThread(QCoreApplication.instance()) # Start DBus loop if has_dbus: print("DBus available. Creating main loop...", end=" ") mainloop = DBusQtMainLoop(set_as_default = True) dbus.set_default_main_loop(mainloop) print("done.") else: print("DBus unavailable.") # Create app. app.setApplicationName(common.app_name) app.setApplicationVersion(common.app_version) app.installTranslator(translate.translator) # We want Nimbus to stay open when the last window is closed, # so we set this. app.setQuitOnLastWindowClosed(False) # If D-Bus is present... if has_dbus: print("Creating DBus session bus...", end=" ") try: bus = dbus.SessionBus() except: print("failed.") else: print("done.") try: print("Checking for running instances of %s..." % (common.app_name,), end=" ") proxy = bus.get_object("org.nimbus.%s" % (common.app_name,), "/%s" % common.app_name,) except: dbus_present = False else: dbus_present = True print("done.") # If Nimbus detects the existence of another Nimbus process, it # will send all the requested URLs to the existing process and # exit. if dbus_present: print("An instance of Nimbus is already running. Passing arguments via DBus.") for arg in argv[1:]: proxy.addTab(arg) if len(argv) < 2: proxy.addWindow() return elif has_dbus: print("No prior instances found. Continuing on our merry way.") # Hack together the browser's icon. This needs to be improved. common.app_icon = common.complete_icon("nimbus") app.setWindowIcon(common.app_icon) common.searchEditor = search_manager.SearchEditor() common.downloadManager = DownloadManager(windowTitle=tr("Downloads")) common.downloadManager.resize(QSize(480, 320)) common.downloadManager.loadSession() # Create tray icon. common.trayIcon = SystemTrayIcon() common.trayIcon.newWindowRequested.connect(addWindow) #common.trayIcon.windowReopenRequested.connect(reopenWindow) common.trayIcon.show() # Creates a licensing information dialog. common.licenseDialog = custom_widgets.LicenseDialog() # Create instance of clear history dialog. common.chistorydialog = clear_history_dialog.ClearHistoryDialog() uc = QUrl.fromUserInput(settings.user_css) websettings = QWebSettings.globalSettings() websettings.setUserStyleSheetUrl(uc) websettings.enablePersistentStorage(settings.settings_folder) websettings.setAttribute(websettings.LocalContentCanAccessRemoteUrls, True) websettings.setAttribute(websettings.LocalContentCanAccessFileUrls, True) websettings.setAttribute(websettings.DeveloperExtrasEnabled, True) try: websettings.setAttribute(websettings.ScrollAnimatorEnabled, True) except: pass common.applyWebSettings() # Set up settings dialog. settings.settingsDialog = settings_dialog.SettingsDialog() settings.settingsDialog.setWindowFlags(Qt.Dialog) closeSettingsDialogAction = QAction(settings.settingsDialog) closeSettingsDialogAction.setShortcuts(["Esc", "Ctrl+W"]) closeSettingsDialogAction.triggered.connect(settings.settingsDialog.hide) settings.settingsDialog.addAction(closeSettingsDialogAction) # Set up clippings manager. settings.clippingsManager = settings_dialog.ClippingsPanel() settings.clippingsManager.setWindowFlags(Qt.Dialog) closeClippingsManagerAction = QAction(settings.clippingsManager) closeClippingsManagerAction.setShortcuts(["Esc", "Ctrl+W"]) closeClippingsManagerAction.triggered.connect(settings.clippingsManager.hide) settings.clippingsManager.addAction(closeClippingsManagerAction) # Create DBus server if has_dbus: print("Creating DBus server...", end=" ") server = DBusServer(bus) print("done.") # Load adblock rules. filtering.adblock_filter_loader.start() if not os.path.isdir(settings.extensions_folder): try: print("Copying extensions...", end=" ") shutil.copytree(common.extensions_folder,\ settings.extensions_folder) except: print("failed.") else: print("done.") if not os.path.isfile(settings.startpage): try: print("Copying start page...", end=" ") shutil.copy2(common.startpage, settings.startpage) except: print("failed.") else: print("done.") settings.reload_extensions() settings.reload_userscripts() server_thread.setDirectory(settings.extensions_folder) # Start extension server. server_thread.start() # On quit, save settings. app.aboutToQuit.connect(prepareQuit) # Load settings. data.loadData() # View source dialog. common.viewSourceDialog = ViewSourceDialogTabber() #common.viewSourceDialog.show() # This is a baaad name. common.sessionSaver = QTimer(QCoreApplication.instance()) common.sessionSaver.timeout.connect(saveSession) common.sessionSaver.timeout.connect(data.saveData) if common.portable: common.sessionSaver.start(50000) else: common.sessionSaver.start(30000) common.desktop = QDesktopWidget() changeSettings = False if os.path.isfile(settings.crash_file): print("Crash file detected.", end="") if not has_dbus: print(" With no DBus, %s may already be running." % common.app_name,) multInstances = QMessageBox.question(None, tr("Hm."), tr("It's not good to run multiple instances of %(app_name)s. Is an instance of %(app_name)s already running?") % {"app_name": common.app_name}, QMessageBox.Yes | QMessageBox.No) if multInstances == QMessageBox.Yes: print("%s will now halt." % common.app_name,) return else: print() clearCache = QMessageBox() clearCache.setWindowTitle(tr("Ow.")) clearCache.setText(tr("%(app_name)s seems to have crashed during your last session. Fortunately, your tabs were saved up to 30 seconds beforehand. Would you like to restore them?") % {"app_name": common.app_name}) clearCache.addButton(QPushButton(tr("Yes and change &settings")), QMessageBox.YesRole) clearCache.addButton(QMessageBox.Yes) clearCache.addButton(QMessageBox.No) returnValue = clearCache.exec_() if returnValue == QMessageBox.No: try: os.remove(settings.session_file) except: pass if returnValue == 0: changeSettings = True else: f = open(settings.crash_file, "w") f.write("") f.close() if not "--daemon" in argv and os.path.exists(settings.session_file): print("Loading previous session...", end=" ") if changeSettings: settings.settingsDialog.exec_() loadSession() print("done.") if not "--daemon" in argv and len(argv[1:]) > 0: # Create instance of MainWindow. print("Loading the URLs you requested...", end=" ") if len(browser.windows) > 0: win = browser.windows[-1] else: win = MainWindow(appMode = ("--app" in argv)) # Open URLs from command line. if len(argv[1:]) > 0: for arg in argv[1:]: if "." in arg or ":" in arg: win.addTab(url=arg) if win.tabWidget().count() < 1: win.addTab(url=settings.settings.value("general/Homepage")) # Show window. win.show() print("done.") elif not "--daemon" in argv and len(argv[1:]) == 0 and len(browser.windows) == 0: win = MainWindow(appMode = ("--app" in argv)) win.addTab(url=settings.settings.value("general/Homepage")) win.show() # Load filtering stuff. if not os.path.isdir(filtering.hosts_folder): common.trayIcon.showMessage(tr("Downloading content filters"), ("Ad blocking and host filtering will not work until this completes.")) filtering.update_filters() else: filtering.load_host_rules() # Start app. print("Kon~!") sys.exit(app.exec_())
from sklearn.decomposition import PCA from data import loadData import pandas as pd from p4 import p4PR, p4ROC data = loadData() x_set = data.loc[:, 'b3356':'b4703'] pca = PCA(n_components=3) pca.fit(x_set) new_x = pd.DataFrame(pca.transform(x_set)) y1 = data.loc[:, 'Strain'] y2 = data.loc[:, 'Medium'] y3 = data.loc[:, 'Stress'] y4 = data.loc[:, 'GenePerturbed'] # p4PR(new_x,y1) # p4ROC(new_x,y1) # # p4PR(new_x,y2) # p4ROC(new_x,y2) # # p4PR(new_x,y3) # p4ROC(new_x,y3) # # p4PR(new_x,y4) # p4ROC(new_x,y4) # #
def main(argv): """This is a documentation string. Write a description of what your code does here. You should generally put documentation strings ("docstrings") on all your Python functions.""" ######################### # YOUR CODE GOES HERE # ######################### scribus.statusMessage(str(scribus.PAPER_A4)) scribus.newDocument( scribus.PAPER_A4, #paper (MARGIN, MARGIN, MARGIN, MARGIN), #margins scribus.LANDSCAPE, #orientation 0, #firstPageNumber scribus.UNIT_MILLIMETERS, #unit scribus.PAGE_1, #pagesType 0, #firstPageOrder 0, #numPages ) scribus.createCharStyle('date1', 'Athelas Bold', 45) scribus.createCharStyle('month1', 'Athelas Bold', 16) scribus.createCharStyle('name1', 'Athelas Regular', 16) scribus.createParagraphStyle('dateL', alignment=scribus.ALIGN_LEFT, charstyle='date1') scribus.createParagraphStyle('monthL', alignment=scribus.ALIGN_LEFT, charstyle='month1') scribus.createParagraphStyle('nameL', alignment=scribus.ALIGN_LEFT, charstyle='name1') scribus.createParagraphStyle('dateR', alignment=scribus.ALIGN_RIGHT, charstyle='date1') scribus.createParagraphStyle('monthR', alignment=scribus.ALIGN_RIGHT, charstyle='month1') scribus.createParagraphStyle('nameR', alignment=scribus.ALIGN_RIGHT, charstyle='name1') masterPage() d = data.loadData() """ We want to make pamphlet (signature) of 5 x A4 papers printed from both sides with 2 weeks on each side 2sided 4imposition refer imposition.py """ def pageFn(left, right): page = scribus.newPage(-1, 'planner') i = 0 sizeDate = (20, 15) sizeMonth = (20, 7) sizeName = (290, 7) for xend, y in iterDayLines(): try: tLeftDate = left[i] posLeftDate = (xstart, y - sizeDate[1]) posLeftMonth = (xstart + sizeDate[0], y - sizeDate[1]) posLeftName = (xstart + sizeDate[0], y - sizeName[1]) tLeftName = ', '.join(d[tLeftDate.month][tLeftDate.day]) objLeftDate = scribus.createText(*posLeftDate + sizeDate) objLeftMonth = scribus.createText(*posLeftMonth + sizeMonth) objLeftName = scribus.createText(*posLeftName + sizeName) scribus.setText(tLeftDate.strftime('%d'), objLeftDate) scribus.setText(mm(tLeftDate), objLeftMonth) scribus.setText(tLeftName, objLeftName) scribus.setStyle('dateL', objLeftDate) scribus.setStyle('monthL', objLeftMonth) scribus.setStyle('nameL', objLeftName) except IndexError: pass try: posRightDate = (xend - sizeDate[0], y - sizeDate[1]) posRightMonth = (xend - sizeDate[0] - sizeMonth[0], y - sizeDate[1]) posRightName = (xend - sizeDate[0] - sizeName[0], y - sizeName[1]) tRightDate = right[i] tRightName = ', '.join(d[tRightDate.month][tRightDate.day]) objRightDate = scribus.createText(*posRightDate + sizeDate) objRightMonth = scribus.createText(*posRightMonth + sizeMonth) objRightName = scribus.createText(*posRightName + sizeName) scribus.setText(tRightDate.strftime('%d'), objRightDate) scribus.setText(mm(tRightDate), objRightMonth) scribus.setText(tRightName, objRightName) scribus.setStyle('dateR', objRightDate) scribus.setStyle('monthR', objRightMonth) scribus.setStyle('nameR', objRightName) except IndexError: pass i += 1 dates.forEachWeek(pageFn) scribus.deletePage(1)
# 'population' : 10, # 'mutationRate' : 0.0001, # 'error' : 0.04, # 'epochs' : 1000 # } # eann = ann.eann(opt) # eann.train(train_data, train_result) # files.saveData(eann, 'eann-all.db') # files.saveData(eann.w, 'eann-w-all.db') #init ann eann = files.loadData('eann-all.db') eann_w = files.loadData('eann-w-all.db') opt = { 'architecture' : eann.architecture, 'learningRate' : 9, 'error' : 0.001, 'epochs' : 50, 'batch' : 100 } nn = ann.ann(opt) eann_w = np.asarray(eann_w) for i in range(len(eann_w)): eann_w[i] = eann_w[i].astype(float) nn.w = eann_w nn.train(train_data, train_result)
#init data train_data = train_data[0:1000] train_result = train_result[0:1000] # #init rbm # rbm = ann.rbm(784, 3, 5, 0.3, 100) # rbm.train(train_data) # files.saveData(rbm, 'rbm-1000.db') rbm = files.loadData('rbm.db') im = rbm.sim(test_data[0:1]) im = np.array(im[0]) im = im.reshape(28,28) fig = plt.figure() plotwindow = fig.add_subplot(111) plt.imshow(im , cmap='gray') plt.show() im = rbm.sim(test_data[0:1]) print np.array_equal(im[0], im[1])
import data as data import xgboost as xgb from sklearn.metrics import log_loss from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler import random from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import roc_auc_score from sklearn.ensemble import RandomForestClassifier import getopt import sys from XGBoostClassifier import XGBoostClassifier from tqdm import tqdm random.seed() train_x,train_y,valid_x,valid_y,test_x,valid_id,test_id=data.loadData() def train(model_id,train_x,train_y,valid_x,valid_y,test_x): train_x,train_y=shuffle(train_x,train_y) maximum_auc=0.0 random_state=random.randint(0, 1000000) for i in tqdm(range(1000)): config={ 'base_estimator':'gbtree', 'objective':'multi:softprob', 'metric':'mlogloss', 'num_classes':2, 'learning_rate':random.uniform(0.01,0.15), 'max_depth':20+random.randint(0,10), 'max_samples':random.uniform(0.3,1.0),
""" Created on Sat Mar 21 12:24:16 2015 @author: Paco """ import numpy as np from sklearn.cross_validation import train_test_split from data import loadData from featureConstruction import dictionaryInitialization,dico_construction from models import listModels,createNormalizedDataframe,savePredictions mat_file = 'data_challenge.mat' # Load datas dataset = loadData(mat_file) # Train dictionary construction d_train = dictionaryInitialization() d_train = dico_construction(dataset['X_train'],d_train) labels = np.array(dataset['y_train']) Xarr_norm = createNormalizedDataframe(d_train) # Test our models X_train_train, X_train_test, y_train_train, y_train_test = train_test_split(Xarr_norm,labels,test_size=0.2,random_state=42) X_train_train = np.nan_to_num(X_train_train) X_train_test = np.nan_to_num(X_train_test) # Scores models = listModels()
class probabilityOutput: def __init__(self): startData = tableAt(0) hyperParams = [1 for x in range(100)] self.distribution = probabilityDistribution(hyperParams, startData) def readRadioData(self, radio): radioData = tableAt(radio) self.distribution.update(radioData) def printProbabilities(self): res = str(self.distribution.probability(0)) for i in range(1, 100): prob = self.distribution.probability(i) res += ',' res += str(prob) print(res) def main(): out = probabilityOutput() out.readRadioData(0) out.printProbabilities() for i in range(1, 303): radio = int(stdin.readline()) out.readRadioData(radio) out.printProbabilities() loadData() main()
import ann import data as files #import the data matfn=u'mnist/mnist_uint8.mat' data=sio.loadmat(matfn) train_data = np.float64(data['train_x']) /255 train_result = np.float64(data['train_y']) test_data = np.float64(data['test_x']) / 255 test_result = np.float64(data['test_y']) #load nn nn = files.loadData('nn.db') # _w = nn.w # _w = np.absolute(_w) # avr = 0 # for i in _w: # avr += np.mean(i) # avr = avr/len(_w) # for i in range(len(_w)): # for j in range(len(_w[i])): # for n in range(len(_w[i][j])): # temp = _w[i][j][n] # if temp > avr: # temp = 1
def main(self): # 데이터를 통한 사전 구성 한다. char2idx, idx2char, vocabularyLength = data.loadVocabulary() # 훈련 데이터와 테스트 데이터를 가져온다. xTrain, yTrain, xTest, yTest = data.loadData() # 훈련셋 인코딩 만드는 부분이다. inputTrainEnc, inputTrainEncLength = data.encProcessing(xTrain, char2idx) # 훈련셋 디코딩 입력 부분 만드는 부분이다. outputTrainDec, outputTrainDecLength = data.decOutputProcessing(yTrain, char2idx) # 훈련셋 디코딩 출력 부분 만드는 부분이다. targetTrainDec = data.decTargetProcessing(yTrain, char2idx) inputTestEnc, inputTestEncLength = data.encProcessing(xTest,char2idx) outputTestDec, outputTestDecLength = data.decOutputProcessing(yTest, char2idx) targetTestDec = data.decTargetProcessing(yTest, char2idx) # 현재 경로'./'에 현재 경로 하부에 # 체크 포인트를 저장한 디렉토리를 설정한다. checkPointPath = os.path.join(os.getcwd(), DEFINES.checkPointPath) # 디렉토리를 만드는 함수이며 두번째 인자 exist_ok가 # True이면 디렉토리가 이미 존재해도 OSError가 # 발생하지 않는다. # exist_ok가 False이면 이미 존재하면 # OSError가 발생한다. os.makedirs(checkPointPath, exist_ok=True) # 에스티메이터 구성한다. classifier = tf.estimator.Estimator( model_fn=ml.Model, # 모델 등록한다. model_dir=DEFINES.checkPointPath, # 체크포인트 위치 등록한다. params={ # 모델 쪽으로 파라메터 전달한다. 'hiddenSize': DEFINES.hiddenSize, # 가중치 크기 설정한다. 'layerSize': DEFINES.layerSize, # 멀티 레이어 층 개수를 설정한다. 'learningRate': DEFINES.learningRate, # 학습율 설정한다. 'vocabularyLength': vocabularyLength, # 딕셔너리 크기를 설정한다. 'embeddingSize': DEFINES.embeddingSize, # 임베딩 크기를 설정한다. 'embedding': DEFINES.embedding, # 임베딩 사용 유무를 설정한다. 'multilayer': DEFINES.multilayer, # 멀티 레이어 사용 유무를 설정한다. }) # 학습 실행 print(inputTrainEnc.shape, outputTrainDec.shape, targetTrainDec.shape) classifier.train(input_fn=lambda:data.trainInputFn( inputTrainEnc, outputTrainDec, targetTrainDec, DEFINES.batchSize), steps=DEFINES.trainSteps) evalResult = classifier.evaluate(input_fn=lambda:data.evalInputFn( inputTestEnc, outputTestDec, targetTestDec, DEFINES.batchSize)) print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**evalResult)) # 테스트용 데이터 만드는 부분이다. # 인코딩 부분 만든다. inputPredicEnc, inputPredicEncLength = data.encProcessing(["가끔 궁금해"], char2idx) # 학습 과정이 아니므로 디코딩 입력은 # 존재하지 않는다.(구조를 맞추기 위해 넣는다.) outputPredicDec, outputPredicDecLength = data.decOutputProcessing([""], char2idx) # 학습 과정이 아니므로 디코딩 출력 부분도 # 존재하지 않는다.(구조를 맞추기 위해 넣는다.) targetPredicDec = data.decTargetProcessing([""], char2idx) # 예측을 하는 부분이다. predictions = classifier.predict( input_fn=lambda:data.evalInputFn(inputPredicEnc, outputPredicDec, targetPredicDec, DEFINES.batchSize)) # 예측한 값을 인지 할 수 있도록 # 텍스트로 변경하는 부분이다. data.pred2string(predictions, idx2char)
def train(model_name): # train model train_loader = dt.loadData(train=True) model = getModel(model_name = model_name) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=cfg.lr, momentum=cfg.momentum) scheduler = optim.lr_scheduler.StepLR(optimizer, cfg.lr_decaying_step, gamma = cfg.lr_decaying_value) saved_model_path = cfg.log_path + model_name + "_cifar10.pt" if os.path.isfile(saved_model_path): # load saved checkpoint checkpoint = torch.load(saved_model_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] loss = checkpoint['loss'] else: start_epoch = 1 model.train() print("\nStart training ", model_name, "...") for epoch in range(start_epoch, cfg.epochs + 1): for batch_idx, (data, target) in enumerate(tqdm(train_loader)): data, target = data.to(cfg.device), target.to(cfg.device) if cfg.convert_to_RGB: batch_size, channel, width, height = data.size() data = data.view(batch_size, channel, width, height).expand(batch_size, cfg.converted_channel, width, height) optimizer.zero_grad() output=model(data) loss = criterion(output, target) loss.backward() optimizer.step() scheduler.step() if cfg.save_model and (epoch % cfg.save_epoch == 0): if not(os.path.isdir(cfg.log_path)): os.makedirs(os.path.join(cfg.log_path)) torch.save({ 'epoch':epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss }, saved_model_path) print('\tTrain Epoch: {} / {} \t Loss: {:.6f}\n'.format(epoch, cfg.epochs, loss.item())) print("Done!\n\n")
def test_cmf(): import scipy.io import cfeval # matdata1 = scipy.io.loadmat('data1.mat') # matdata2 = scipy.io.loadmat('data1.mat') """ Xtrn = matdata1['Xtrn'] print Xtrn.shape Xtrn = scipy.sparse.csc_matrix(Xtrn) Xaux = matdata2['Xtrn'] + matdata2['Xtst'] # Xaux = Xaux.T.tocsc() Xaux = scipy.sparse.csc_matrix(Xaux.T) print Xaux.shape Xtst = matdata1['Xtst'] print Xtst.shape Xtst = scipy.sparse.csc_matrix(Xtst) """ Xs_trn = loadData('./data/meta.txt', './em_66_f2_m11_tr.libsvm') #Xs_trn = loadData('./data/meta.txt', './data/em_10000_f5_t4_k1_tr.libsvm') for mat in Xs_trn: print mat.shape Xs_tst = loadData('./data/meta.txt', './em_66_f2_m11_te.libsvm') #Xs_tst = loadData('./data/meta.txt', './data/em_10000_f5_t4_k1_te.libsvm') for mat in Xs_tst: print mat.shape # Xs_trn = [Xtrn, Xaux] # Xs_tst = [Xtst, None] # rc_schema = numpy.array([[0, 2], [1, 0]]) rc_schema = numpy.array([[0, 1, 0], [1, 2, 2]]) # rc_schema should be the same order of data matrices C = 0.1 K = 50 # number of latent factors alphas = [0.4, 0.4, 0.2] T = 100 # number of iterations modes = numpy.zeros(len(Xs_trn), object) modes[0] = 'densemf' modes[1] = 'sparsemf' modes[2] = 'sparsemf' r0s = [0.1, 0.1, 0.1] r1s = [0.05, 0.05, 0.05] [Us, r0s, r1s] = learn(Xs_trn, Xs_tst, rc_schema, r0s, r1s, alphas, modes, K, C, T) print '******' print Us[0].shape print Us[1].shape print Us[2].shape print '********' # Vt = scipy.sparse.csc_matrix(Us[0],dtype=float) # Ut = scipy.sparse.csc_matrix(Us[1],dtype=float) Ys_tst = predict(Us, Xs_tst, rc_schema, r0s, r1s, modes) #tst X = Xs_tst[0] Y = Ys_tst[0] print Y.shape print Y print "K: %d, C: %f" % (K, C) print "alphas: ", alphas print "rmse: %.4f , mae: %.4f\n" % (cfeval.rmse(X, Y), cfeval.mae(X, Y))
logging.info(d.config) makedir_and_clear(opt.output) if opt.cross_validation > 1: documents = data.load_data_fda(opt.train_file, True, opt.types, opt.type_filter, True, False) external_train_data = [] if 'ext_corpus' in d.config: ext_corpus = d.config['ext_corpus'] for k, v in ext_corpus.items(): if k == 'made' or k == 'cardio': external_train_data.extend( data.loadData(v['path'], True, v.get('types'), v.get('types'))) elif k == 'tac': external_train_data.extend( data.load_data_fda(v['path'], True, v.get('types'), v.get('types'), False, False)) else: raise RuntimeError("not support external corpus") logging.info("use {} fold cross validataion".format( opt.cross_validation)) fold_num = opt.cross_validation total_doc_num = len(documents) dev_doc_num = total_doc_num // fold_num macro_p = 0.0 macro_r = 0.0
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from plot import plotData from data import loadData import GradientDescent as gd import numpy as np data = loadData('../data/ex1data1.txt') (m, features) = data.shape X = data[:, 0] y = data[:, 1] # Plotting the data plotData(X, y) plt.show() # Gradient Descent print("Running Gradient Descent ...") X = np.append(np.ones((m, 1)), X, 1) # add a column of ones to X theta = np.zeros((2, 1)) # initialize fitting parameters # some gradient descent settings iterations = 1500 alpha = 0.01 # compute and display initial cost (expected: 32.0727338775) cost = gd.computeCost(X, y, theta) print("initial cost: ", cost)
def main(argv): global server_thread print("Starting %s %s..." % (common.app_name, common.app_version)) print(""" __ / \_ __( )_ _( \_ _( )_ (__________________) """) app = QApplication(argv) network.setup() filtering.setup() # Create extension server. server_thread = extension_server.ExtensionServerThread( QCoreApplication.instance()) # Start DBus loop if has_dbus: print("DBus available. Creating main loop...", end=" ") mainloop = DBusQtMainLoop(set_as_default=True) dbus.set_default_main_loop(mainloop) print("done.") else: print("DBus unavailable.") # Create app. app.setApplicationName(common.app_name) app.setApplicationVersion(common.app_version) app.installTranslator(translate.translator) # We want Nimbus to stay open when the last window is closed, # so we set this. app.setQuitOnLastWindowClosed(False) # If D-Bus is present... if has_dbus: print("Creating DBus session bus...", end=" ") try: bus = dbus.SessionBus() except: print("failed.") else: print("done.") try: print("Checking for running instances of %s..." % (common.app_name, ), end=" ") proxy = bus.get_object( "org.nimbus.%s" % (common.app_name, ), "/%s" % common.app_name, ) except: dbus_present = False else: dbus_present = True print("done.") # If Nimbus detects the existence of another Nimbus process, it # will send all the requested URLs to the existing process and # exit. if dbus_present: print( "An instance of Nimbus is already running. Passing arguments via DBus." ) for arg in argv[1:]: proxy.addTab(arg) if len(argv) < 2: proxy.addWindow() return elif has_dbus: print("No prior instances found. Continuing on our merry way.") # Hack together the browser's icon. This needs to be improved. common.app_icon = common.complete_icon("nimbus") app.setWindowIcon(common.app_icon) common.searchEditor = search_manager.SearchEditor() common.downloadManager = DownloadManager(windowTitle=tr("Downloads")) common.downloadManager.resize(QSize(480, 320)) common.downloadManager.loadSession() # Create tray icon. common.trayIcon = SystemTrayIcon() common.trayIcon.newWindowRequested.connect(addWindow) #common.trayIcon.windowReopenRequested.connect(reopenWindow) common.trayIcon.show() # Creates a licensing information dialog. common.licenseDialog = custom_widgets.LicenseDialog() # Create instance of clear history dialog. common.chistorydialog = clear_history_dialog.ClearHistoryDialog() uc = QUrl.fromUserInput(settings.user_css) websettings = QWebSettings.globalSettings() websettings.setUserStyleSheetUrl(uc) websettings.enablePersistentStorage(settings.settings_folder) websettings.setAttribute(websettings.LocalContentCanAccessRemoteUrls, True) websettings.setAttribute(websettings.LocalContentCanAccessFileUrls, True) websettings.setAttribute(websettings.DeveloperExtrasEnabled, True) try: websettings.setAttribute(websettings.ScrollAnimatorEnabled, True) except: pass common.applyWebSettings() # Set up settings dialog. settings.settingsDialog = settings_dialog.SettingsDialog() settings.settingsDialog.setWindowFlags(Qt.Dialog) closeSettingsDialogAction = QAction(settings.settingsDialog) closeSettingsDialogAction.setShortcuts(["Esc", "Ctrl+W"]) closeSettingsDialogAction.triggered.connect(settings.settingsDialog.hide) settings.settingsDialog.addAction(closeSettingsDialogAction) # Set up clippings manager. settings.clippingsManager = settings_dialog.ClippingsPanel() settings.clippingsManager.setWindowFlags(Qt.Dialog) closeClippingsManagerAction = QAction(settings.clippingsManager) closeClippingsManagerAction.setShortcuts(["Esc", "Ctrl+W"]) closeClippingsManagerAction.triggered.connect( settings.clippingsManager.hide) settings.clippingsManager.addAction(closeClippingsManagerAction) # Create DBus server if has_dbus: print("Creating DBus server...", end=" ") server = DBusServer(bus) print("done.") # Load adblock rules. filtering.adblock_filter_loader.start() if not os.path.isdir(settings.extensions_folder): try: print("Copying extensions...", end=" ") shutil.copytree(common.extensions_folder,\ settings.extensions_folder) except: print("failed.") else: print("done.") if not os.path.isfile(settings.startpage): try: print("Copying start page...", end=" ") shutil.copy2(common.startpage, settings.startpage) except: print("failed.") else: print("done.") settings.reload_extensions() settings.reload_userscripts() server_thread.setDirectory(settings.extensions_folder) # Start extension server. server_thread.start() # On quit, save settings. app.aboutToQuit.connect(prepareQuit) # Load settings. data.loadData() # View source dialog. common.viewSourceDialog = ViewSourceDialogTabber() #common.viewSourceDialog.show() # This is a baaad name. common.sessionSaver = QTimer(QCoreApplication.instance()) common.sessionSaver.timeout.connect(saveSession) common.sessionSaver.timeout.connect(data.saveData) if common.portable: common.sessionSaver.start(50000) else: common.sessionSaver.start(30000) common.desktop = QDesktopWidget() changeSettings = False if os.path.isfile(settings.crash_file): print("Crash file detected.", end="") if not has_dbus: print( " With no DBus, %s may already be running." % common.app_name, ) multInstances = QMessageBox.question( None, tr("Hm."), tr("It's not good to run multiple instances of %(app_name)s. Is an instance of %(app_name)s already running?" ) % {"app_name": common.app_name}, QMessageBox.Yes | QMessageBox.No) if multInstances == QMessageBox.Yes: print("%s will now halt." % common.app_name, ) return else: print() clearCache = QMessageBox() clearCache.setWindowTitle(tr("Ow.")) clearCache.setText( tr("%(app_name)s seems to have crashed during your last session. Fortunately, your tabs were saved up to 30 seconds beforehand. Would you like to restore them?" ) % {"app_name": common.app_name}) clearCache.addButton(QPushButton(tr("Yes and change &settings")), QMessageBox.YesRole) clearCache.addButton(QMessageBox.Yes) clearCache.addButton(QMessageBox.No) returnValue = clearCache.exec_() if returnValue == QMessageBox.No: try: os.remove(settings.session_file) except: pass if returnValue == 0: changeSettings = True else: f = open(settings.crash_file, "w") f.write("") f.close() if not "--daemon" in argv and os.path.exists(settings.session_file): print("Loading previous session...", end=" ") if changeSettings: settings.settingsDialog.exec_() loadSession() print("done.") if not "--daemon" in argv and len(argv[1:]) > 0: # Create instance of MainWindow. print("Loading the URLs you requested...", end=" ") if len(browser.windows) > 0: win = browser.windows[-1] else: win = MainWindow(appMode=("--app" in argv)) # Open URLs from command line. if len(argv[1:]) > 0: for arg in argv[1:]: if "." in arg or ":" in arg: win.addTab(url=arg) if win.tabWidget().count() < 1: win.addTab(url=settings.settings.value("general/Homepage")) # Show window. win.show() print("done.") elif not "--daemon" in argv and len(argv[1:]) == 0 and len( browser.windows) == 0: win = MainWindow(appMode=("--app" in argv)) win.addTab(url=settings.settings.value("general/Homepage")) win.show() # Load filtering stuff. if not os.path.isdir(filtering.hosts_folder): common.trayIcon.showMessage(tr("Downloading content filters"), ( "Ad blocking and host filtering will not work until this completes." )) filtering.update_filters() else: filtering.load_host_rules() # Start app. print("Kon~!") sys.exit(app.exec_())
app = Flask(__name__) # Conexion con el servidor vcap_config = os.environ.get('VCAP_SERVICES') decoded_config = json.loads(vcap_config) for key, value in decoded_config.iteritems(): if key.startswith('mongodb'): mongo_creds = decoded_config[key][0]['credentials'] mongo_url = str(mongo_creds['url']) client = MongoClient(mongo_url) logging.warn('carga de datos') # Cargamos los datos data.loadData(client) logging.warn('fin de carga de datos') @app.route('/') def Welcome(): return app.send_static_file('index.html') @app.route('/listar') def listar(): logging.warn('Inicio Consulta') db = client.db listado = db.listado lista = listado.find().sort('nombre',1) logging.warn('Fin Consulta')
from sklearn.model_selection import train_test_split from data import loadData, saveData import tensorflow as tf import config seed = config.seed F = loadData(filename='feature.npy') labels = loadData(filename='labels.npy') x_train, x_test, y_train, y_test = train_test_split(F, labels, test_size=0.1, random_state=seed) # Visualize decoder setting # Parameters LR = 0.01 training_epoch = 400 batch_size = 128 display_step = 20 # Network Parameters n_input = F.shape[1] # hidden layer settings n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 128 # 2nd layer num features n_hidden_3 = 8 # 3rd layer num features # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) Y = tf.placeholder("int64", [
if opt.random_seed != 0: random.seed(opt.random_seed) np.random.seed(opt.random_seed) torch.manual_seed(opt.random_seed) torch.cuda.manual_seed_all(opt.random_seed) d = data.Data(opt) logging.info(d.config) makedir_and_clear(opt.output) logging.info("load data ...") train_data = data.loadData(opt.train_file, True, opt.types, opt.type_filter) dev_data = data.loadData(opt.dev_file, True, opt.types, opt.type_filter) if opt.test_file: test_data = data.loadData(opt.test_file, False, opt.types, opt.type_filter) else: test_data = None logging.info("load dict ...") UMLS_dict, UMLS_dict_reverse = umls.load_umls_MRCONSO(d.config['norm_dict']) logging.info("dict concept number {}".format(len(UMLS_dict))) train(train_data, dev_data, test_data, d, UMLS_dict, UMLS_dict_reverse, opt, None, False) elif opt.whattodo == 2:
def trainModel(): # Parse args parser = argparse.ArgumentParser(description='Train the CNN') parser.add_argument('--expt_dir', default='./logs', help='save dir for experiment logs') parser.add_argument('--train', default='./data', help='path to training set') parser.add_argument('--val', default='./data', help='path to validation set') parser.add_argument('--test', default='./data', help='path to test set') parser.add_argument('--save_dir', default='./models', help='path to save model') parser.add_argument('--arch', default='models/cnn.json', help = 'path to model architecture') parser.add_argument('--model_name', default = 'model', help = 'name of the model to save logs, weights') parser.add_argument('--lr', default = 0.001, help = 'learning rate') parser.add_argument('--init', default = '1', help = 'initialization') parser.add_argument('--batch_size', default = 20, help = 'batch_size') args = parser.parse_args() # Load data train_path, valid_path, test_path = args.train, args.val, args.test logs_path = args.expt_dir model_path, model_name = args.save_dir, args.model_name model_path = os.path.join(model_path, model_name) if not os.path.isdir(model_path): os.mkdir(model_path) lr, batch_size, init = float(args.lr), int(args.batch_size), int(args.init) data = loadData(train_path, valid_path, test_path) train_X, train_Y, valid_X, valid_Y, test_X, test_Y = data['train']['X'], data['train']['Y'],\ data['valid']['X'], data['valid']['Y'],\ data['test']['X'], data['test']['Y'], # Logging train_log_name = '{}.train.log'.format(model_name) valid_log_name = '{}.valid.log'.format(model_name) train_log = setup_logger('train-log', os.path.join(logs_path, train_log_name)) valid_log = setup_logger('valid-log', os.path.join(logs_path, valid_log_name)) # Train num_epochs = 500 num_batches = int(float(train_X.shape[0]) / batch_size) steps = 0 patience = 100 early_stop=0 model = getModel(lr) loss_history = [np.inf] for epoch in range(num_epochs): print 'Epoch {}'.format(epoch) steps = 0 indices = np.arange(train_X.shape[0]) np.random.shuffle(indices) train_X, train_Y = train_X[indices], train_Y[indices] for batch in range(num_batches): start, end = batch * batch_size, (batch + 1) * batch_size x, y = Augment(train_X[range(start, end)]).batch, train_Y[range(start, end)] model.fit(x.reshape((-1, 1, 28, 28)), y, batch_size = batch_size, verbose = 0) steps += batch_size if steps % train_X.shape[0] == 0 and steps != 0: train_loss, train_acc = model.evaluate(train_X.reshape((-1, 1, 28, 28)), train_Y) train_log.info('Epoch {}, Step {}, Loss: {}, Accuracy: {}, lr: {}'.format(epoch, steps, train_loss, train_acc, lr)) valid_loss, valid_acc = model.evaluate(valid_X.reshape((-1, 1, 28, 28)), valid_Y) valid_log.info('Epoch {}, Step {}, Loss: {}, Accuracy: {}, lr: {}'.format(epoch, steps, valid_loss, valid_acc, lr)) if valid_loss < min(loss_history): save_path = os.path.join(model_path, 'model') model.save(save_path) early_stop = 0 early_stop += 1 if (early_stop >= patience): print "No improvement in validation loss for " + str(patience) + " steps - stopping training!" print("Optimization Finished!") return 1 loss_history.append(valid_loss) print("Optimization Finished!")
scatter.set(yticklabels=[]) scatter.fig.suptitle("Scatter plot of all variables w.r.t. " + LABEL + " " + outlierInfo, fontsize=40) scatter.fig.subplots_adjust(top=.9) plt.savefig(join( GRAPHS_FOLDER, "scatter_plot_of_all_variables_wrt_" + LABEL + "_(" + iter + ").png"), format="png") if __name__ == "__main__": if not isdir(DATASETS_FOLDER): makedirs(DATASETS_FOLDER) if not isdir(GRAPHS_FOLDER): makedirs(GRAPHS_FOLDER) fetchData(URL, DATASETS_FOLDER, ZIP_FILENAME) data = loadData(DATASETS_FOLDER, ZIP_FILENAME, FILENAME) printData(data) visualizeData(data, "1") """ From the distributions and heatmaps, we see chlorides has the highest skewness and kurtosis. Also, other variables like volatile acidity, free sulfur dioxide, density, etc have a lot of outliers. """ """ From the boxplot, we confirm that chlorides have the highest number of outliers, and all the remaining variables have outliers except alcohol. """ """ From the heatmap, residual sugar and density has correlation = 0.84, free sulfur dioxide and total sulfur dioxide has correlation = 0.62, alcohol and density has correlation = -0.78. """ """ From the scatterplot, density seems to have a linear or constant relationship with every other variable. Also, heatmap suggests same. Hence, we will drop density. Out of free sulfur dioxide and total sulfur dioxide, we drop free sulfur dioxide since it has lower correlation with quality. We also drop the lowest correlated variable, citric acid. """
def trainModel(): # Parse args parser = argparse.ArgumentParser(description='Train the CNN') parser.add_argument('--expt_dir', default='./logs', help='save dir for experiment logs') parser.add_argument('--train', default='./data', help='path to training set') parser.add_argument('--val', default='./data', help='path to validation set') parser.add_argument('--test', default='./data', help='path to test set') parser.add_argument('--save_dir', default='./models', help='path to save model') parser.add_argument('--arch', default='models/cnn.json', help='path to model architecture') parser.add_argument('--model_name', default='model', help='name of the model to save logs, weights') parser.add_argument('--lr', default=0.001, help='learning rate') parser.add_argument('--init', default='1', help='initialization') parser.add_argument('--batch_size', default=20, help='batch_size') args = parser.parse_args() # Load data train_path, valid_path, test_path = args.train, args.val, args.test logs_path = args.expt_dir model_path, model_arch, model_name = args.save_dir, args.arch, args.model_name model_path = os.path.join(model_path, model_name) if not os.path.isdir(model_path): os.mkdir(model_path) lr, batch_size, init = float(args.lr), int(args.batch_size), int(args.init) data = loadData(train_path, valid_path, test_path) train_X, train_Y, valid_X, valid_Y, test_X, test_Y = data['train']['X'], data['train']['Y'],\ data['valid']['X'], data['valid']['Y'],\ data['test']['X'], data['test']['Y'], # Load architecture arch = loadArch(model_arch) # Logging train_log_name = '{}.train.log'.format(model_name) valid_log_name = '{}.valid.log'.format(model_name) train_log = setup_logger('train-log', os.path.join(logs_path, train_log_name)) valid_log = setup_logger('valid-log', os.path.join(logs_path, valid_log_name)) # GPU config gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) # Train num_epochs = 100 num_batches = int(float(train_X.shape[0]) / batch_size) steps = 0 patience = 50 early_stop = 0 with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as session: model = CNN(arch, session, logs_path, init, lr) loss_history = [np.inf] for epoch in range(num_epochs): print 'Epoch {}'.format(epoch) steps = 0 indices = np.arange(train_X.shape[0]) np.random.shuffle(indices) train_X, train_Y = train_X[indices], train_Y[indices] for batch in range(num_batches): start, end = batch * batch_size, (batch + 1) * batch_size x, y = Augment(train_X[range(start, end)]).batch, train_Y[range( start, end)] try: model.step(x, y) except MemoryError: print 'Memory error in step' exit() steps += batch_size if steps % train_X.shape[0] == 0 and steps != 0: try: train_loss, train_acc = testModel( model, train_X, train_Y, batch_size) except MemoryError: print 'Memory error in test for train' exit() train_log.info( 'Epoch {}, Step {}, Loss: {}, Accuracy: {}, lr: {}'. format(epoch, steps, train_loss, train_acc, model.lr)) try: valid_loss, valid_acc = testModel( model, valid_X, valid_Y, batch_size) except MemoryError: print 'Memory error in test for valid' exit() valid_log.info( 'Epoch {}, Step {}, Loss: {}, Accuracy: {}, lr: {}'. format(epoch, steps, valid_loss, valid_acc, model.lr)) if valid_loss < min(loss_history): save_path = os.path.join(model_path, 'model') model.save(save_path) early_stop = 0 early_stop += 1 if (early_stop >= patience): print "No improvement in validation loss for " + str( patience) + " steps - stopping training!" print("Optimization Finished!") return 1 loss_history.append(valid_loss) print("Optimization Finished!")
from eval.rsquared import rsquaredEval from eval.mae import maeEval from eval.nmse import nmseEval from eval.fb import fbEval from crossvalidation import crossValidation from models.model_decisiontree import trainDecisionTree, applyDecisionTree # parameters k = 4 dataFile1 = "/media/sf_Google_Drive/transfer/data/data_year.csv" #outputDir = "/media/sf_Google_Drive/transfer/model_output_year/" # load the data, both of them data1 = {} columns1 = [] loadData(dataFile1, ["location", "year"], data1, columns1) random.seed(42) models = [] models.append({ "name": "linear", "norm": NONORMALIZATION, "train": trainLinearRegression, "apply": applyLinearRegression, "data": data1, "columns": columns1, "parameters": { 'intercept': True, 'normalize': True, "features": columns1 }
# import pandas as pd import data as dat # Use pandas to read in the sentiment lexicon: df = pd.read_csv('lexicon/sentiment-lexicon.csv') # If you want to preview: #df.head() # Load in the data using the data module: data = dat.loadData() # Look up words in the lexicon: score = 0 word_count = 0 sentiment_tally = { 'neutral': 0, 'negative': 0, 'positive': 0 } missing = {} found = {} for word in data: _score = 0 # Get the lexicon row which matches our word: row = df[df.word1 == word]