def load_img(config, data_dir): img, geom, vis, depth, kp, desc = loadFromDir( data_dir, "-16x16", bUseColorImage=True, crop_center=config.data_crop_center, load_lift=config.use_lift) return img, geom, vis
# train_path = getattr(config, "data_dir_" + _set[:2]) + split + "/" train_path = getattr(config, "data_dir_tr") # Create data dump directory name data_names = getattr(config, "data_tr") data_name = data_names.split(".")[0] cur_folder = "/".join( [data_folder, data_name, "numkp-{}".format(config.obj_num_kp)]) if not os.path.exists(cur_folder): os.makedirs(cur_folder) img, kp, desc, aff, K, R, t = loadFromDir(train_path, cur_folder, "-16x16", bUseColorImage=True, crop_center=crop_center, load_hessian=True) if len(kp) == 0: kp = [None] * len(img) if len(desc) == 0: desc = [None] * len(img) pair_index = np.loadtxt(train_path + "pair_index.txt") # Check if we've done this folder already. print(" -- Waiting for the data_folder to be ready") ready_file = os.path.join(cur_folder, "ready") if not os.path.exists(ready_file): print(" -- No ready file {}".format(ready_file))
# Now start data prep print("Preparing data for {}".format(config.data_tr.split(".")[0])) for _set in ["train", "valid", "test"]: num_sample = getattr( config, "train_max_{}_sample".format(_set[:2])) # Load the data print("Loading Raw Data for {}".format(_set)) if _set == "valid": split = "val" else: split = _set img, geom, vis, depth, kp, desc = loadFromDir( getattr(config, "data_dir_" + _set[:2]) + split + "/", "-16x16", bUseColorImage=True, crop_center=crop_center, load_lift=config.use_lift) if len(kp) == 0: kp = [None] * len(img) if len(desc) == 0: desc = [None] * len(img) z = [None] * len(img) # Generating all possible pairs print("Generating list of all possible pairs for {}".format(_set)) pairs = [] for ii, jj in itertools.product(xrange(len(img)), xrange(len(img))): if ii != jj: if vis[ii][jj] > getattr(config, "data_vis_th_" + _set[:2]): pairs.append((ii, jj))
# Now start data prep print("Preparing data for {}".format(config.data_tr.split(".")[0])) for _set in ["train", "valid", "test"]: num_sample = getattr(config, "train_max_{}_sample".format(_set[:2])) # Load the data print("Loading Raw Data for {}".format(_set)) if _set == "valid": split = "val" else: split = _set img, geom, vis, depth, kp, desc = loadFromDir( getattr(config, "data_dir_" + _set[:2]) + split + "/", "-16x16", bUseColorImage=True, crop_center=crop_center, precomputed_kp_method=config.precomputed_kp_method) if len(kp) == 0: kp = [None] * len(img) if len(desc) == 0: desc = [None] * len(img) z = [None] * len(img) # Generating all possible pairs print("Generating list of all possible pairs for {}".format(_set)) pairs = [] for ii, jj in itertools.product(xrange(len(img)), xrange(len(img))): if ii != jj: if vis[ii][jj] > getattr(config, "data_vis_th_" + _set[:2]): pairs.append((ii, jj))