def calc_n_shapley_values(n_feats, n_samples, n_iter, data_type, cf_name, overwrite=False, data_dir="result_data_sunnies"): """ Returns a nested list of shapley values (per player) per iteration; [[v1... vn], [v1...vn], [v1...vn], ...] I.e. the length of the list is equal to n_iter """ players = list(range(n_feats)) filename = f"{data_dir}/{n_feats}_feats_{n_samples}_samples_{n_iter}_iter_{cf_name}.npy" if not overwrite and os.path.exists(filename): return numpy.load(filename) all_shaps = [] for _i in range(n_iter): x, y = data.make_data(n_feats, n_samples, data_type) _shapley_values = calc_shapley_values(x, y, cf_name) all_shaps.append(_shapley_values) numpy.save(filename, all_shaps) return all_shaps
my_array = {} my_url = input("Ссылка которую нужно сократить: ") my_new_name = input("Новое имя ссылки: ") emulator.adding_to_dict(my_new_name, my_url, my_array) while True: new_link_request = input("Хотите добавить еще ссылку?(y/n): ") if new_link_request == "y": my_url = input("Ссылка которую нужно сократить: ") my_new_name = input("Новое имя ссылки: ") emulator.adding_to_dict(my_new_name, my_url, my_array) elif new_link_request == "n": break data.make_data(my_new_name, my_url) while True: link_request = input("Хотите получить свою ссылку(y/n): ") if link_request == "y": name = input("Имя: ") emulator.get_linc_from_dict(name, my_array) elif link_request == "n": break while True: ans = input('Показать БД?(y/n): ') if ans == 'y': with shelve.open('data') as db: data = dict(db.items()) print(data)
# Number of irrelevant features N_IRRELEVANT = 0 # Models to use MODELS = [Ridge, KNeighborsRegressor] # Model complexity COMPLEXITIES = [1.0, 5] ######## # Main # ######## if __name__ == '__main__': # Generate data X, y = make_data(N_DATASETS * N_SAMPLES, N_IRRELEVANT) # Plot data scatter_plot(X[:, 0], y, 'Q3d_data') # Calculate expected error and its terms for # each model for model, complexity in zip(MODELS, COMPLEXITIES): # Create the protocol p = Protocol(X, y) # Train models p.train(model, complexity, N_DATASETS) # Get error and its terms noise, s_bias, var, exp_error = p.eval()
from data import make_data import plotly import plotly.graph_objs as go file = open('FRvideos.csv', 'r', encoding="utf8") dataset = make_data(file) print(dataset) #вивести стовпчикову діаграму з кілкістю відео за кожну дату new_dict = dict() for category_id in dataset: for date in dataset[category_id]: if date in new_dict: new_dict[date] += len(dataset[category_id][date].values()) else: new_dict[date] = len(dataset[category_id][date].values()) diagram = go.Bar(x=list(new_dict.keys()), y=list(new_dict.values())) fig = go.Figure(data=[diagram]) plotly.offline.plot(fig, filename='graph1.html') #вивести кругову діаграму з кількістю відео в кожній категорії new_new_dict = dict() for category_id in dataset: for date in dataset[category_id]: if category_id in new_new_dict: new_new_dict[category_id] += len( dataset[category_id][date].values()) else: new_new_dict[category_id] = len( dataset[category_id][date].values())
stack.extend([ ZeroCenter(), LinearSymplecticTwoByTwo(), SymplecticAdditiveCoupling(shift_model=IrrotationalMLP()) ]) #SymplecticAdditiveCoupling(shift_model=MLP())]) T = Chain(stack) step = tf.get_variable("global_step", [], tf.int64, tf.zeros_initializer(), trainable=False) with tf.Session() as sess: z = make_data(settings, sess) loss = make_loss(settings, T, z) train_op = make_train_op(settings, loss, step) # sess.run(tf.global_variables_initializer()) # Set the ZeroCenter bijectors to training mode: for i, bijector in enumerate(T.bijectors): if hasattr(bijector, 'is_training'): T.bijectors[i].is_training = True tf.contrib.training.train(train_op, logdir=settings['log_dir'], save_checkpoint_secs=60)
import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets from data import make_data from plot import plot # (X^-1 * X.T) * y # X * X.T # [ # [1, 3], # [2, 4] # ... ] # β=(X.T*X)^−1 * X.T * y X_train, y_train, X_test, y_test = make_data(n_samples=6) intercept = np.ones(shape=y_train.shape).reshape(-1, 1) print("intercept:", intercept) X_train = np.concatenate((X_train, intercept), 1) print("\nX_train\n", X_train) print(X_train.shape) a = X_train.T print("\nX_train.T\n", a) print(a.shape) a = a.dot(X_train) print("\nX_train.T.dot(X_train)\n", a) print(a.shape) a = inv(a) print("\nX_train.T.dot(X_train)*-1\n", a)
def get_dataset(sample_number): X, y = make_data(sample_number, random_state=get_random_state()) return X, y
print('Cost : ', cost(C, X, Z)) if __name__ == "__main__": # Loading the existing data if real_data: temp_X, temp_Y = load_file(load_data) random.shuffle(temp_X) random.shuffle(temp_Y) U, y = removeDups(temp_X, temp_Y) # Synthetic Data else: U, y, C_, Z_, ids_ = make_data(5, 0, 8, 50) # # X_train, X_test, y_train, y_test = train_test_split(np.array(temp_X), np.array(temp_Y), test_size=0.33, random_state=42) # # print(X_test.shape) # # data is finally in U and labels in y # print('u shape ', len(U),',',len(U[0])) # print(U[0][0]) # print(U[1][0]) # print(U[2][0]) # # print(LS(U, [U[0]], 1)[0]) # # print(cost_km([U[1]], U)) if LSAlgo in RunAlgos:
Z = [U[x[0]] for x in dists[-z:]] X = [x[0] for x in dists[:-z]] # storing index of point in U cNum = [0 for _ in range(k)] C = np.zeros((k, len(U[0]))) for i in X: cNum[cIds[i]] += 1 # update no of points in cluster C[cIds[i]] = C[cIds[i]] + U[i] for j in range(k): if cNum[j] != 0: C[j] = C[j] / cNum[j] else: print('empty') return C, Z if __name__ == "__main__": random.seed(0) np.random.seed(0) U, y, C_, Z_, ids_ = make_data(5, 10, 10, 100, num_points=10) C, Z = kmeans_minus(U, 3, 5) plotGraph(U, C, Z, "./Plots/KMeans_") ''' 4 -> make_data(5, 0, 10, 50) 3 -> make_data(5, 10, 10, 50) 2 -> make_data(5, 0, 8, 50) 1 -> make_data(5, 0, 10, 100) '''