print(largest_object) target_tensor = data.target_to_tensor(largest_object) # Expected : {'bboxes': torch.tensor([0.5240, 0.5735, 0.8360, 0.7534]), 'labels': torch.tensor([5])}) print(target_tensor) # The datasets is already downloaded on the cluster dataset_dir = "/opt/Datasets/Pascal-VOC2012/" download = False # How do we preprocessing the image (e.g. none, crop, shrink) image_transform_params = {'image_mode': 'none'} # How do we preprocess the targets target_transform_params = { 'target_mode': 'largest_bbox', 'image_transform_params': image_transform_params } # The post-processing of the image image_transform = transforms.ToTensor() train_dataset, valid_dataset = data.make_trainval_dataset( dataset_dir=dataset_dir, image_transform_params=image_transform_params, transform=image_transform, target_transform_params=target_transform_params, download=download) print(train_dataset[203])
} } target_transform_params = { 'target_mode': 'only_cls', 'image_transform_params': image_transform_params } imagenet_preprocessing = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) image_transform = transforms.Compose( [transforms.ToTensor(), imagenet_preprocessing]) train_dataset, val_dataset = data.make_trainval_dataset( image_transform_params=image_transform_params, transform=image_transform, target_transform_params=target_transform_params, download=True) print(train_dataset[0]) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, **kwargs) valid_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=32, shuffle=False, **kwargs) ############################################ Model model = extract.FeatureExtractor()