def create_data_from_image(self ,image_path): print("Create data patches for model") dim = self.dim_label image = self.open_image(image_path) dp = 2* self.padding vertical = int((image.shape[0] - dp) / dim) horizontal = int((image.shape[1] - dp) / dim) number_of_patches = vertical * horizontal data = np.empty((number_of_patches, self.dim_data*self.dim_data*3), dtype=theano.config.floatX) label = np.empty((number_of_patches, dim*dim), dtype=theano.config.floatX) idx = 0 for i in range(vertical): for j in range(horizontal): img_i = i * dim img_j = j * dim image_patch = from_rgb_to_arr(image[img_i: img_i + dim + dp, img_j: img_j + dim + dp]) if self.normalize: image_patch = normalize(image_patch, self.std) data[idx] = image_patch idx += 1 aerial = AerialDataset() return aerial.shared_dataset([data, label], cast_to_int=True), (vertical, horizontal)
def _create_dataset(self, set_name): dim = (self.dataset_config.input_dim, self.dataset_config.output_dim) path = self.dataset_path preprocessing = self.dataset_config.use_preprocessing print("---- Using preprossing: {}".format(preprocessing)) std = self.dataset_config.dataset_std samples_per_image = 200 creator = Creator(path, dim=dim, preproccessing=preprocessing, std=std) creator.load_dataset() #Creating a shared variable of sampled test data raw_set = None if set_name == "valid": raw_set = creator.valid else: raw_set = creator.test aerial = AerialDataset() return aerial.shared_dataset(creator.sample_data(raw_set, samples_per_image), cast_to_int=True)
def _create_dataset(self, set_name): dim = (self.dataset_config.input_dim, self.dataset_config.output_dim) path = self.dataset_path preprocessing = self.dataset_config.use_preprocessing print("---- Using preprossing: {}".format(preprocessing)) std = self.dataset_config.dataset_std samples_per_image = 200 creator = Creator(path, dim=dim, preproccessing=preprocessing, std=std) creator.load_dataset() #Creating a shared variable of sampled test data raw_set = None if set_name == "valid": raw_set = creator.valid else: raw_set = creator.test aerial = AerialDataset() return aerial.shared_dataset(creator.sample_data( raw_set, samples_per_image), cast_to_int=True)