def build_itm_dataset(txt_dbs, img_dbs, all_img_dbs, isTrain, opts): dataset_list = [] for txt_path, img_path in zip(txt_dbs, img_dbs): img_db, img_db_gt = load_img_feat(img_path, all_img_dbs, opts) qa_txt_db = VcrTxtTokLmdb(txt_path, opts.max_txt_len, task="qa") qar_txt_db = VcrTxtTokLmdb(txt_path, opts.max_txt_len, task="qar") dataset_list.append( ItmDataset(qa_txt_db, img_db_gt=img_db_gt, img_db=img_db, task="qa", isTrain=isTrain)) dataset_list.append( ItmDataset(qar_txt_db, img_db_gt=img_db_gt, img_db=img_db, task="qar", isTrain=isTrain)) collate_fn = itm_ot_collate dataset = ConcatDatasetWithLens(dataset_list) return dataset, collate_fn
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format( device, n_gpu, hvd.rank(), opts.fp16)) if rank != 0: LOGGER.disabled = True hps_file = f'{opts.output_dir}/log/hps.json' model_opts = Struct(json.load(open(hps_file))) assert opts.split in opts.img_db and opts.split in opts.txt_db # load DBs and image dirs eval_img_db, eval_img_db_gt = load_img_feat(opts.img_db, model_opts) eval_txt_db = VcrTxtTokLmdb(opts.txt_db, -1) eval_dataset = VcrEvalDataset( "test", eval_txt_db, img_db=eval_img_db, img_db_gt=eval_img_db_gt) # Prepare model model = UniterForVisualCommonsenseReasoning.from_pretrained( f'{opts.output_dir}/log/model.json', state_dict={}, img_dim=IMG_DIM) model.init_type_embedding() model.init_word_embedding(NUM_SPECIAL_TOKENS) if exists(opts.checkpoint): ckpt_file = opts.checkpoint else: ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt' checkpoint = torch.load(ckpt_file) state_dict = checkpoint.get('model_state', checkpoint) matched_state_dict = {} unexpected_keys = set() missing_keys = set() for name, param in model.named_parameters(): missing_keys.add(name) for key, data in state_dict.items(): if key in missing_keys: matched_state_dict[key] = data missing_keys.remove(key) else: unexpected_keys.add(key) LOGGER.info(f"Unexpected_keys: {list(unexpected_keys)}") LOGGER.info(f"Missing_keys: {list(missing_keys)}") model.load_state_dict(matched_state_dict, strict=False) model.to(device) if opts.fp16: model = amp.initialize(model, enabled=True, opt_level='O2') eval_dataloader = DataLoader(eval_dataset, batch_size=opts.batch_size, num_workers=opts.n_workers, pin_memory=opts.pin_mem, shuffle=False, collate_fn=vcr_eval_collate) eval_dataloader = PrefetchLoader(eval_dataloader) _, results = evaluate(model, eval_dataloader) result_dir = f'{opts.output_dir}/results_{opts.split}' if not exists(result_dir) and rank == 0: os.makedirs(result_dir) all_results = {} for id2res in all_gather_list(results): all_results.update(id2res) if hvd.rank() == 0: with open(f'{result_dir}/' f'results_{opts.checkpoint}_all.json', 'w') as f: json.dump(all_results, f) probs_df = save_for_submission( f'{result_dir}/results_{opts.checkpoint}_all.json') probs_df.to_csv(f'{result_dir}/results_{opts.checkpoint}_all.csv')
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() opts.rank = rank LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format( device, n_gpu, hvd.rank(), opts.fp16)) if opts.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, " "should be >= 1".format( opts.gradient_accumulation_steps)) set_random_seed(opts.seed) # load DBs and image dirs all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb, opts.num_bb, opts.compressed_db) # train LOGGER.info(f"Loading Train Dataset " f"{opts.train_txt_dbs}, {opts.train_img_dbs}") train_datasets = [] for txt_path, img_path in zip(opts.train_txt_dbs, opts.train_img_dbs): img_db, img_db_gt = load_img_feat(img_path, all_img_dbs, opts) qa_txt_db = VcrTxtTokLmdb(txt_path, opts.max_txt_len, task="qa") qar_txt_db = VcrTxtTokLmdb(txt_path, opts.max_txt_len, task="qar") train_datasets.append( VcrDataset(qa_txt_db, img_db_gt=img_db_gt, img_db=img_db)) train_datasets.append( VcrDataset(qar_txt_db, img_db_gt=img_db_gt, img_db=img_db)) train_dataset = ConcatDatasetWithLens(train_datasets) train_dataloader = build_dataloader(train_dataset, vcr_collate, True, opts) # val LOGGER.info(f"Loading Val Dataset {opts.val_txt_db}, {opts.val_img_db}") val_img_db, val_img_db_gt = load_img_feat(opts.val_img_db, all_img_dbs, opts) val_txt_db = VcrTxtTokLmdb(opts.val_txt_db, -1, task="qa") val_dataset = VcrEvalDataset( "val", val_txt_db, img_db=val_img_db, img_db_gt=val_img_db_gt) val_final_dataset = VcrEvalDataset( ##"test" "val", val_txt_db, img_db=val_img_db, img_db_gt=val_img_db_gt) val_dataloader = build_dataloader(val_dataset, vcr_eval_collate, False, opts) val_final_dataloader = build_dataloader( val_final_dataset, vcr_eval_collate, False, opts) # Prepare model if opts.checkpoint and opts.checkpoint_from == "pretrain": checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} all_dbs = opts.train_txt_dbs + [opts.val_txt_db] toker = json.load(open(f'{all_dbs[0]}/meta.json'))['bert'] assert all(toker == json.load(open(f'{db}/meta.json'))['bert'] for db in all_dbs) model = UniterForVisualCommonsenseReasoning.from_pretrained( opts.model_config, checkpoint, img_dim=IMG_DIM) model.init_type_embedding() model.init_type_embedding_know() model.init_word_embedding(NUM_SPECIAL_TOKENS) if opts.checkpoint_from == "vcr_pretrain": checkpoint = torch.load(opts.checkpoint) state_dict = checkpoint.get('model_state', checkpoint) matched_state_dict = {} unexpected_keys = set() missing_keys = set() for name, param in model.named_parameters(): missing_keys.add(name) for key, data in state_dict.items(): if key in missing_keys: matched_state_dict[key] = data missing_keys.remove(key) else: unexpected_keys.add(key) print("Unexpected_keys:", list(unexpected_keys)) print("Missing_keys:", list(missing_keys)) model.load_state_dict(matched_state_dict, strict=False) del checkpoint model.to(device) # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) model, optimizer = amp.initialize(model, optimizer, enabled=opts.fp16, opt_level='O2') global_step = 0 if rank == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) os.makedirs(join(opts.output_dir, 'results')) # store VQA predictions add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: LOGGER.disabled = True pbar = NoOp() model_saver = NoOp() LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Num examples = %d", len(train_dataset) * hvd.size()) LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) running_loss = RunningMeter('loss') model.train() n_examples = 0 n_epoch = 0 start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() optimizer.step() while True: for step, batch in enumerate(train_dataloader): n_examples += batch['input_ids'].size(0) loss = model(batch, compute_loss=True) loss = loss.mean() delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale ) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None] all_reduce_and_rescale_tensors(grads, float(1)) running_loss(loss.item()) if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for i, param_group in enumerate(optimizer.param_groups): if i == 0 or i == 1: param_group['lr'] = lr_this_step * opts.lr_mul elif i == 2 or i == 3: param_group['lr'] = lr_this_step else: raise ValueError() TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss # NOTE: not gathered across GPUs for efficiency TB_LOGGER.add_scalar('loss', running_loss.val, global_step) TB_LOGGER.step() # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() pbar.update(1) if global_step % 100 == 0: # monitor training throughput LOGGER.info(f'============Step {global_step}=============') tot_ex = sum(all_gather_list(n_examples)) ex_per_sec = int(tot_ex / (time()-start)) LOGGER.info(f'{tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar('perf/ex_per_s', ex_per_sec, global_step) LOGGER.info(f'===========================================') if global_step % opts.valid_steps == 0: val_log, results = validate( model, val_dataloader) TB_LOGGER.log_scaler_dict(val_log) model_saver.save(model, global_step) if global_step >= opts.num_train_steps: break if global_step >= opts.num_train_steps: break n_epoch += 1 LOGGER.info(f"finished {n_epoch} epochs") if global_step % opts.valid_steps != 0: val_log, results = validate( model, val_dataloader) TB_LOGGER.log_scaler_dict(val_log) val_log, results = validate(model, val_final_dataloader) with open(f'{opts.output_dir}/results/' f'results_{global_step}_final_qa_qar_' f'rank{rank}.json', 'w') as f: json.dump(results, f) TB_LOGGER.log_scaler_dict(val_log) model_saver.save(model, global_step)
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format(device, n_gpu, hvd.rank(), opts.fp16)) if rank != 0: LOGGER.disabled = True hps_file = f'{opts.output_dir}/log/hps.json' model_opts = Struct(json.load(open(hps_file))) assert opts.split in opts.img_db and opts.split in opts.txt_db # load DBs and image dirs eval_img_db, eval_img_db_gt = load_img_feat(opts.img_db, model_opts) eval_txt_db = VcrTxtTokLmdb(opts.txt_db, -1) eval_dataset = VcrEvalDataset("val", eval_txt_db, img_db=eval_img_db, img_db_gt=eval_img_db_gt) # Prepare model model = UniterForVisualCommonsenseReasoning.from_pretrained( f'{opts.output_dir}/log/model.json', state_dict={}, img_dim=IMG_DIM) model.init_type_embedding() model.init_type_embedding_know() model.init_word_embedding(NUM_SPECIAL_TOKENS) if exists(opts.checkpoint): ckpt_file = opts.checkpoint else: ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt' checkpoint = torch.load(ckpt_file) state_dict = checkpoint.get('model_state', checkpoint) matched_state_dict = {} unexpected_keys = set() missing_keys = set() for name, param in model.named_parameters(): missing_keys.add(name) for key, data in state_dict.items(): if key in missing_keys: matched_state_dict[key] = data missing_keys.remove(key) else: unexpected_keys.add(key) LOGGER.info(f"Unexpected_keys: {list(unexpected_keys)}") LOGGER.info(f"Missing_keys: {list(missing_keys)}") model.load_state_dict(matched_state_dict, strict=False) model.to(device) if opts.fp16: model = amp.initialize(model, enabled=True, opt_level='O2') eval_dataloader = DataLoader(eval_dataset, batch_size=opts.batch_size, num_workers=opts.n_workers, pin_memory=opts.pin_mem, shuffle=False, collate_fn=vcr_eval_collate) eval_dataloader = PrefetchLoader(eval_dataloader) results = evaluate(model, eval_dataloader) output = '/src/vlkaf.json' before_json = "" for i, item in enumerate(results): jstring = json.dumps(item) before_json += jstring + '\n' f = open(output, "w") f.write(before_json) f.close() '''
def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() opts.rank = rank LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format(device, n_gpu, hvd.rank(), opts.fp16)) if opts.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, " "should be >= 1".format( opts.gradient_accumulation_steps)) set_random_seed(opts.seed) # load DBs and image dirs all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb, opts.num_bb, opts.compressed_db) # train LOGGER.info(f"Loading Train Dataset " f"{opts.train_txt_dbs}, {opts.train_img_dbs}") train_datasets = [] for txt_path, img_path in zip(opts.train_txt_dbs, opts.train_img_dbs): img_db, img_db_gt = load_img_feat(img_path, all_img_dbs, opts) qa_txt_db = VcrTxtTokLmdb(txt_path, opts.max_txt_len, task="qa") qar_txt_db = VcrTxtTokLmdb(txt_path, opts.max_txt_len, task="qar") train_datasets.append( VcrDataset(qa_txt_db, img_db_gt=img_db_gt, img_db=img_db)) train_datasets.append( VcrDataset(qar_txt_db, img_db_gt=img_db_gt, img_db=img_db)) train_dataset = ConcatDatasetWithLens(train_datasets) train_dataloader = build_dataloader(train_dataset, vcr_collate, True, opts) # val LOGGER.info(f"Loading Val Dataset {opts.val_txt_db}, {opts.val_img_db}") val_img_db, val_img_db_gt = load_img_feat(opts.val_img_db, all_img_dbs, opts) val_txt_db = VcrTxtTokLmdb(opts.val_txt_db, -1) val_dataset = VcrEvalDataset("val", val_txt_db, img_db=val_img_db, img_db_gt=val_img_db_gt) val_final_dataset = VcrEvalDataset("test", val_txt_db, img_db=val_img_db, img_db_gt=val_img_db_gt) val_dataloader = build_dataloader(val_dataset, vcr_eval_collate, False, opts) val_final_dataloader = build_dataloader(val_final_dataset, vcr_eval_collate, False, opts) # Prepare model if opts.checkpoint and opts.checkpoint_from == "pretrain": ckpt = torch.load(opts.checkpoint) checkpoint = {k.replace('bert', 'uniter'): v for k, v in ckpt.items()} else: checkpoint = {} all_dbs = opts.train_txt_dbs + [opts.val_txt_db] toker = json.load(open(f'{all_dbs[0]}/meta.json'))['bert'] assert all(toker == json.load(open(f'{db}/meta.json'))['bert'] for db in all_dbs) model = UniterForVisualCommonsenseReasoning.from_pretrained( opts.model_config, checkpoint, img_dim=IMG_DIM) model.init_type_embedding() model.init_word_embedding(NUM_SPECIAL_TOKENS) if opts.checkpoint_from == "vcr_pretrain": ckpt = torch.load(opts.checkpoint) checkpoint = {k.replace('bert', 'uniter'): v for k, v in ckpt.items()} state_dict = checkpoint.get('model_state', checkpoint) matched_state_dict = {} unexpected_keys = set() missing_keys = set() for name, param in model.named_parameters(): missing_keys.add(name) for key, data in state_dict.items(): if key in missing_keys: matched_state_dict[key] = data missing_keys.remove(key) else: unexpected_keys.add(key) print("Unexpected_keys:", list(unexpected_keys)) print("Missing_keys:", list(missing_keys)) model.load_state_dict(matched_state_dict, strict=False) del checkpoint model.to(device) # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) model, optimizer = amp.initialize(model, optimizer, enabled=opts.fp16, opt_level='O2') global_step = 0 if rank == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) os.makedirs(join(opts.output_dir, 'results')) # store VQA predictions add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: LOGGER.disabled = True pbar = NoOp() model_saver = NoOp() LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Num examples = %d", len(train_dataset) * hvd.size()) LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) running_loss = RunningMeter('loss') model.train() n_examples = 0 n_epoch = 0 start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() optimizer.step() while True: for step, batch in enumerate(train_dataloader): n_examples += batch['input_ids'].size(0) # ============= Code for adversarial training ============= if opts.adv_training: # initialize delta txt_embeds_init = model.uniter.embeddings.word_embeddings( batch['input_ids']) img_embeds_init = batch['img_feat'] # for simplicity, we initialize the delta as zero vectors, which performs # very simliar as initializing randomly using norm or uniform distributions txt_delta = torch.zeros_like(txt_embeds_init) img_delta = torch.zeros_like(img_embeds_init) # calculate the prob. scores for clean samples gt_answer_scores = model(batch, compute_loss=False) gt_answer_prob = F.softmax(gt_answer_scores, dim=1) gt_answer_logprob = F.log_softmax(gt_answer_scores, dim=1) # the main loop for astep in range(opts.adv_steps): # (0) forward if opts.adv_modality == ["text"]: txt_delta.requires_grad_() img_delta = torch.zeros_like(img_embeds_init) elif opts.adv_modality == ["image"]: img_delta.requires_grad_() txt_delta = torch.zeros_like(txt_embeds_init) else: txt_delta.requires_grad_() img_delta.requires_grad_() if "alter" not in opts.adv_modality: answer_scores = model(batch, adv_training=True, adv_modality=opts.adv_modality, adv_delta_txt=txt_delta, adv_delta_img=img_delta, compute_loss=False) # CE loss ce_loss = F.cross_entropy(answer_scores, batch['targets'].squeeze(-1), reduction='mean') # KL loss answer_prob = F.softmax(answer_scores, dim=1) answer_logprob = F.log_softmax(answer_scores, dim=1) kl_loss = F.kl_div( answer_logprob, gt_answer_prob, reduction='none') + \ F.kl_div( gt_answer_logprob, answer_prob, reduction='none') kl_loss = kl_loss.mean() # (1) backward loss = (ce_loss + opts.adv_kl_weight * kl_loss) / opts.adv_steps else: answer_scores_1 = model(batch, adv_training=True, adv_modality=["text"], adv_delta_txt=txt_delta, adv_delta_img=None, compute_loss=False) # CE loss ce_loss_1 = F.cross_entropy( answer_scores, batch['targets'].squeeze(-1), reduction='mean') answer_scores_2 = model(batch, adv_training=True, adv_modality=["image"], adv_delta_txt=None, adv_delta_img=img_delta, compute_loss=False) # CE loss ce_loss_2 = F.cross_entropy( answer_scores, batch['targets'].squeeze(-1), reduction='mean') # KL loss answer_prob_1 = F.softmax(answer_scores_1, dim=1) answer_logprob_1 = F.log_softmax(answer_scores_1, dim=1) answer_prob_2 = F.softmax(answer_scores_2, dim=1) answer_logprob_2 = F.log_softmax(answer_scores_2, dim=1) kl_loss_1 = F.kl_div( answer_logprob_1, gt_answer_prob, reduction='none') + \ F.kl_div( gt_answer_logprob, answer_prob_1, reduction='none') kl_loss_1 = kl_loss_1.mean() kl_loss_2 = F.kl_div( answer_logprob_2, gt_answer_prob, reduction='none') + \ F.kl_div( gt_answer_logprob, answer_prob_2, reduction='none') kl_loss_2 = kl_loss_2.mean() # (1) backward loss = (ce_loss_1 + ce_loss_2 + opts.adv_kl_weight * (kl_loss_1 + kl_loss_2)) / (opts.adv_steps * 2) delay_unscale = ( (step + 1) % opts.gradient_accumulation_steps != 0) or ((astep + 1) % opts.adv_steps != 0) with amp.scale_loss( loss, optimizer, delay_unscale=delay_unscale) as scaled_loss: scaled_loss.backward(retain_graph=True) if not delay_unscale: # gather gradients from every processes # do this before unscaling # to make sure every process uses # the same gradient scale grads = [ p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None ] all_reduce_and_rescale_tensors(grads, float(1)) running_loss(loss.item()) if astep == opts.adv_steps - 1: # further updates on delta break # (2) get gradient on delta # fix fp16 problem amp_scale = scaled_loss.item() // loss.item() if "text" in opts.adv_modality: txt_delta_grad = txt_delta.grad.clone().detach() txt_delta_grad = txt_delta_grad.float() / amp_scale if "image" in opts.adv_modality: img_delta_grad = img_delta.grad.clone().detach() img_delta_grad = img_delta_grad.float() / amp_scale # (3) update and clip for txt delta if "text" in opts.adv_modality: if opts.norm_type == "l2": denorm = torch.norm(txt_delta_grad.view( txt_delta_grad.size(0), -1), dim=1).view(-1, 1, 1) denorm = torch.clamp(denorm, min=1e-8) txt_delta_step = (opts.adv_lr_txt * txt_delta_grad / denorm).to(txt_delta) txt_delta = (txt_delta + txt_delta_step).detach() if opts.adv_max_norm > 0: delta_norm = torch.norm(txt_delta.view( txt_delta.size(0), -1), p=2, dim=1).detach() exceed_mask = (delta_norm > opts.adv_max_norm ).to(txt_embeds_init) reweights = (opts.adv_max_norm / delta_norm * exceed_mask + (1 - exceed_mask)).view(-1, 1, 1) txt_delta = (txt_delta * reweights).detach() elif opts.norm_type == "linf": denorm = torch.norm(txt_delta_grad.view( txt_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1) denorm = torch.clamp(denorm, min=1e-8) txt_delta_step = (opts.adv_lr_txt * txt_delta_grad / denorm).to(txt_delta) txt_delta = (txt_delta + txt_delta_step).detach() if opts.adv_max_norm > 0: txt_delta = torch.clamp( txt_delta, -opts.adv_max_norm, opts.adv_max_norm).detach() # (4) update and clip for image delta if "image" in opts.adv_modality: if opts.norm_type == "l2": denorm = torch.norm(img_delta_grad.view( img_delta_grad.size(0), -1), dim=1).view(-1, 1, 1) denorm = torch.clamp(denorm, min=1e-8) img_delta_step = (opts.adv_lr_img * img_delta_grad / denorm).to(img_delta) img_delta = (img_delta + img_delta_step).detach() if opts.adv_max_norm > 0: delta_norm = torch.norm(img_delta.view( img_delta.size(0), -1), p=2, dim=1).detach() exceed_mask = (delta_norm > opts.adv_max_norm ).to(img_embeds_init) reweights = (opts.adv_max_norm / delta_norm * exceed_mask + (1 - exceed_mask)).view(-1, 1, 1) img_delta = (img_delta * reweights).detach() elif opts.norm_type == "linf": denorm = torch.norm(img_delta_grad.view( img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1) denorm = torch.clamp(denorm, min=1e-8) img_delta_step = (opts.adv_lr_img * img_delta_grad / denorm).to(img_delta) img_delta = (img_delta + img_delta_step).detach() if opts.adv_max_norm > 0: img_delta = torch.clamp( img_delta, -opts.adv_max_norm, opts.adv_max_norm).detach() else: loss = model(batch, compute_loss=True) loss = loss.mean() delay_unscale = ((step + 1) % opts.gradient_accumulation_steps != 0) with amp.scale_loss( loss, optimizer, delay_unscale=delay_unscale) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [ p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None ] all_reduce_and_rescale_tensors(grads, float(1)) running_loss(loss.item()) # ============================ End ========================== if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for i, param_group in enumerate(optimizer.param_groups): if i == 0 or i == 1: param_group['lr'] = lr_this_step * opts.lr_mul elif i == 2 or i == 3: param_group['lr'] = lr_this_step else: raise ValueError() TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss # NOTE: not gathered across GPUs for efficiency TB_LOGGER.add_scalar('loss', running_loss.val, global_step) TB_LOGGER.step() # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() pbar.update(1) if global_step % 100 == 0: # monitor training throughput LOGGER.info(f'============Step {global_step}=============') tot_ex = sum(all_gather_list(n_examples)) ex_per_sec = int(tot_ex / (time() - start)) LOGGER.info(f'{tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar('perf/ex_per_s', ex_per_sec, global_step) LOGGER.info('===========================================') if global_step % opts.valid_steps == 0: val_log, results = validate(model, val_dataloader) TB_LOGGER.log_scaler_dict(val_log) model_saver.save(model, global_step) if global_step >= opts.num_train_steps: break if global_step >= opts.num_train_steps: break n_epoch += 1 LOGGER.info(f"finished {n_epoch} epochs") if global_step % opts.valid_steps != 0: val_log, results = validate(model, val_dataloader) TB_LOGGER.log_scaler_dict(val_log) val_log, results = validate(model, val_final_dataloader) with open( f'{opts.output_dir}/results/' f'results_{global_step}_final_qa_qar_' f'rank{rank}.json', 'w') as f: json.dump(results, f) TB_LOGGER.log_scaler_dict(val_log) model_saver.save(model, global_step)
def create_dataloaders(datasets, is_train, opts, all_img_dbs=None): if all_img_dbs is None: all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb, opts.num_bb, opts.compressed_db) dataloaders = {} for dset in datasets: for vcr_task in ["qa", "qar"]: if is_train: assert len(dset['db']) == len(dset['img']) assert len(dset['tasks']) == len(dset['mix_ratio']) img_db, img_db_gt = [], [] for img_path in dset['img']: curr_img_db, curr_img_db_gt = load_img_feat( img_path, all_img_dbs, opts) img_db.append(curr_img_db) img_db_gt.append(curr_img_db_gt) else: assert len(dset['db']) == len(dset['img']) == 1 img_db, img_db_gt = load_img_feat(dset['img'][0], all_img_dbs, opts) for i, t in enumerate(dset['tasks']): task = f'{t}_{dset["name"]}' if is_train: LOGGER.info( f"Loading {task} train dataset with vcr_{vcr_task}, " f"{dset['db']}, {[img.img_dir for img in img_db]}," f"{[img.img_dir for img in img_db_gt]}") txt_db = [ VcrTxtTokLmdb(path, opts.max_txt_len, task=vcr_task) for path in dset['db'] ] else: LOGGER.info( f"Loading {task} val dataset with vcr_{vcr_task}, " f"{dset['db']}, {img_db.img_dir}," f"{img_db_gt.img_dir}") txt_db = VcrTxtTokLmdb(dset['db'][0], -1, task=vcr_task) if task.startswith('mlm'): dataset = build_mlm_dataset(txt_db, img_db_gt, img_db, is_train, opts) elif task.startswith('mrfr'): dataset = build_mrfr_dataset(txt_db, img_db_gt, img_db, is_train, opts) elif task.startswith('mrc'): dataset = build_mrc_dataset(txt_db, img_db_gt, img_db, is_train, opts) else: raise ValueError(f'Undefined task {task}') LOGGER.info(f"{len(dataset[0])*hvd.size()} samples loaded") loader = build_dataloader(*dataset, is_train, opts) if is_train: ratio = dset['mix_ratio'][i] dataloaders[task] = (loader, ratio) else: dataloaders[task] = PrefetchLoader(loader) return dataloaders, all_img_dbs