예제 #1
0
    saver.restore(sess, args.load)

batch_idx_train = 0
batch_idx_test = 0

epoch_idx = 0
iteration = 0

maxl_array = np.zeros((2))
maxl_array[0] = args.voxel_size
maxl_array[1] = args.voxel_size

epCount = dataLoad.fileCount(args.datapath)
stepFactor = 9

epochs = dataLoad.gen_epochs(args.epochs, args.datapath, args.batch_size,
                             args.velocity_multiplier, True, args.output_dim)

sess.graph.finalize()

while True:
    batch_train, batch_validate = next(epochs, [None, None])
    epoch_idx += 1

    if batch_train == None:
        break

    print(colored("Epoch %03d" % (epoch_idx), 'yellow'))

    # Training loop
    while True:
예제 #2
0
batch_idx_train = 0
batch_idx_test = 0

epoch_idx = 0
iteration = 0

maxl_array = np.zeros((2))
maxl_array[0] = args.voxel_size
maxl_array[1] = args.voxel_size

epCount = dataLoad.fileCount(args.datapath)
stepFactor = 9

for epoch_train, epoch_validate in dataLoad.gen_epochs(
        args.epochs, args.datapath, args.batch_size, args.velocity_multiplier,
        True, args.output_dim):

    epoch_idx += 1
    print(colored("Epoch %03d" % (epoch_idx), 'yellow'))

    # Train
    for _x, _x_size in epoch_train:

        if batch_idx_train == 10 and args.profile:
            print(colored("Profiling in progress...", 'yellow'))

            with tf.contrib.tfprof.ProfileContext('prof/%s' % args.name,
                                                  trace_steps=[],
                                                  dump_steps=[]) as pctx:
                if args.dosim and args.doloop: