def infer(batch_size=2): # On server with PET and PCT in image_dir = "/hepgpu3-data1/dmcsween/DataTwoWay128/fixed" print("Load Data") image_data, __image, __label = load.data_reader(image_dir, image_dir, image_dir) image_array, image_affine = image_data.get_data() moving_array, moving_affine = __image.get_data() dvf_array, dvf_affine = __label.get_data() list_avail_keys = help.get_moveable_keys(image_array) # Get hamming set print("Load hamming Set") hamming_set = pd.read_csv("hamming_set.txt", sep=",", header=None) print(hamming_set) # Ignore moving and dvf validation_dataset, validation_moving, validation_dvf, train_dataset, train_moving, train_dvf = helper.split_data( image_array, moving_array, dvf_array, split_ratio=0.15) print("Valid Shape:", validation_dataset.shape) normalised_dataset = helper.normalise(validation_dataset) print('Load models') idx_list = [0, 9] K.clear_session() model = load_model('./logs/best_model.h5') myPredictGen = gen.predict_generator( normalised_dataset, list_avail_keys, hamming_set, hamming_idx=idx_list, batch_size=batch_size, N=10) opt = optimizers.SGD(lr=0.01, momentum=0.9) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=["accuracy"]) output = model.predict_generator(generator=myPredictGen, steps=1, verbose=1) print(output)
def train(batch_size=2): # Load DATA fixed_image, moving_image, dvf_label = load.data_reader(fixed_dir, moving_dir, dvf_dir) # Turn into numpy arrays fixed_array, fixed_affine = fixed_image.get_data() moving_array, moving_affine = moving_image.get_data() dvf_array, dvf_affine = dvf_label.get_data(is_image=False) # Shuffle arrays fixed_array, moving_array, dvf_array = helper.shuffle_inplace( fixed_array, moving_array, dvf_array) fixed_affine, moving_affine, dvf_affine = helper.shuffle_inplace( fixed_affine, moving_affine, dvf_affine) # Split into test and training set # Training/Validation/Test = 80/15/5 split test_fixed, test_moving, test_dvf, train_fixed, train_moving, train_dvf = helper.split_data( fixed_array, moving_array, dvf_array, split_ratio=0.05) # Test affine test_fixed_affine, test_moving_affine, test_dvf_affine, train_fixed_affine, train_moving_affine, train_dvf_affine = helper.split_data( fixed_affine, moving_affine, dvf_affine, split_ratio=0.05) # Split training into validation and training set validation_fixed, validation_moving, validation_dvf, train_fixed, train_moving, train_dvf = helper.split_data( train_fixed, train_moving, train_dvf, split_ratio=0.15) print("PCT Shape:", train_fixed.shape) print("PET Shape:", train_moving.shape) print("DVF Shape:", train_dvf.shape) outputPath = './transfer_logs/' # Callbacks reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5) history = LossHistory() checkpoint = ModelCheckpoint(outputPath + 'best_model.h5', monitor='val_loss', verbose=1, save_best_only=True, period=1) tensorboard = TrainValTensorBoard(write_graph=False, log_dir=outputPath) callbacks = [reduce_lr, history, checkpoint, tensorboard] # Train model = buildNet(train_fixed.shape[1:]) for layer in model.layers: print(layer.name, layer.output_shape) print(model.summary()) plot_model(model, to_file=outputPath + 'model.png', show_shapes=True) opt = optimizers.Adam(lr=0.0001) model.compile(optimizer=opt, loss='mean_squared_error') model.fit_generator(generator=helper.generator(inputs=[train_fixed, train_moving], label=train_dvf, batch_size=batch_size), steps_per_epoch=math.ceil(train_fixed.shape[0]/batch_size), epochs=500, verbose=1, callbacks=callbacks, validation_data=helper.generator( inputs=[validation_fixed, validation_moving], label=validation_dvf, batch_size=batch_size), validation_steps=math.ceil(validation_fixed.shape[0]/batch_size)) # accuracy = model.evaluate_generator(generator( # inputs=[validation_fixed, validation_moving], label=validation_dvf, batch_size=batch_size), steps=1, verbose=1) model.save(outputPath + 'model.h5')
def train(): # Load DATA fixed_image, moving_image, dvf_label = load.data_reader( fixed_dir, moving_dir, dvf_dir) # Turn into numpy arrays fixed_array, fixed_affine = fixed_image.get_data() moving_array, moving_affine = moving_image.get_data() dvf_array, dvf_affine = dvf_label.get_data(is_image=False) # Shuffle arrays fixed_array, moving_array, dvf_array = helper.shuffle_inplace( fixed_array, moving_array, dvf_array) fixed_affine, moving_affine, dvf_affine = helper.shuffle_inplace( fixed_affine, moving_affine, dvf_affine) # Split into test and training set # Training/Validation/Test = 80/15/5 split test_fixed, test_moving, test_dvf, train_fixed, train_moving, train_dvf = helper.split_data( fixed_array, moving_array, dvf_array, split_ratio=0.05) # Test affine test_fixed_affine, test_moving_affine, test_dvf_affine, train_fixed_affine, train_moving_affine, train_dvf_affine = helper.split_data( fixed_affine, moving_affine, dvf_affine, split_ratio=0.05) # Split training into validation and training set validation_fixed, validation_moving, validation_dvf, train_fixed, train_moving, train_dvf = helper.split_data( train_fixed, train_moving, train_dvf, split_ratio=0.15) print("PCT Shape:", train_fixed.shape) print("PET Shape:", train_moving.shape) print("DVF Shape:", train_dvf.shape) # CNN Structure fixed_image = Input( shape=(train_fixed.shape[1:])) # Ignore batch but include channel moving_image = Input(shape=(train_moving.shape[1:])) # Correlation layers correlation_out = myLayer.correlation_layer(fixed_image, moving_image, shape=train_fixed.shape[1:4], max_displacement=20, stride=2) x1 = Conv3D(64, (3, 3, 3), strides=2, activation=activation, padding='same', name='downsample1')(correlation_out) x1 = Conv3D(32, (3, 3, 3), strides=2, activation=activation, padding='same', name='downsample2')(x1) x1 = Conv3D(16, (3, 3, 3), strides=2, activation=activation, padding='same', name='downsample3')(x1) x1 = BatchNormalization(axis=-1, momentum=momentum)(x1) x1 = Conv3D(64, (3, 3, 3), activation=activation, padding='same', name='down_1a')(x1) x1 = Conv3D(64, (3, 3, 3), activation=activation, padding='same', name='down_1b')(x1) x1 = Conv3D(64, (3, 3, 3), activation=activation, padding='same', name='down_1c')(x1) x1 = BatchNormalization(axis=-1, momentum=momentum)(x1) x = MaxPooling3D(pool_size=(2, 2, 2), padding='same', name='Pool_1')(x1) x2 = Conv3D(128, (3, 3, 3), activation=activation, padding='same', name='down_2a')(x) x2 = Conv3D(128, (3, 3, 3), activation=activation, padding='same', name='down_2b')(x2) x2 = Conv3D(128, (3, 3, 3), activation=activation, padding='same', name='down_2c')(x2) x2 = BatchNormalization(axis=-1, momentum=momentum)(x2) x = MaxPooling3D(pool_size=(2, 2, 2), padding='same', name='Pool_2')(x2) x3 = Conv3D(256, (3, 3, 3), activation=activation, padding='same', name='down_3a')(x) x3 = Conv3D(256, (3, 3, 3), activation=activation, padding='same', name='down_3b')(x3) x3 = BatchNormalization(axis=-1, momentum=momentum)(x3) x = MaxPooling3D(pool_size=(2, 2, 2), padding='same', name='Pool_3')(x3) x4 = Conv3D(512, (3, 3, 3), activation=activation, padding='same', name='down_4a')(x) x = UpSampling3D(size=(2, 2, 2), name='UpSamp_4')(x4) y3 = Conv3DTranspose(256, (3, 3, 3), activation=activation, padding='same', name='Up_3a')(x) y3 = Conv3DTranspose(256, (3, 3, 3), activation=activation, padding='same', name='Up_3b')(y3) y3 = Conv3DTranspose(256, (3, 3, 3), activation=activation, padding='same', name='Up_3c')(y3) y3 = BatchNormalization()(y3) merge3 = concatenate([x3, y3]) x = UpSampling3D(size=(2, 2, 2), name='UpSamp_3')(merge3) y2 = Conv3DTranspose(128, (3, 3, 3), activation=activation, padding='same', name='Up_2a')(x) y2 = Conv3DTranspose(128, (3, 3, 3), activation=activation, padding='same', name='Up_2b')(y2) y2 = Conv3DTranspose(128, (3, 3, 3), activation=activation, padding='same', name='Up_2c')(y2) y2 = BatchNormalization(axis=-1, momentum=momentum)(y2) merge2 = concatenate([x2, y2]) x = UpSampling3D(size=(2, 2, 2), name='UpSamp_2')(merge2) y1 = Conv3DTranspose(64, (3, 3, 3), activation=activation, padding='same', name='Up_1a')(x) y1 = Conv3DTranspose(64, (3, 3, 3), activation=activation, padding='same', name='Up_1b')(y1) y1 = Conv3DTranspose(64, (3, 3, 3), activation=activation, padding='same', name='Up_1c')(y1) y1 = BatchNormalization(axis=-1, momentum=momentum)(y1) merge1 = concatenate([x1, y1]) # Transform into flow field (from VoxelMorph Github) upsample = Conv3DTranspose(64, (3, 3, 3), strides=2, activation=activation, padding='same', name='upsample_dvf1')(merge1) upsample = Conv3DTranspose(64, (3, 3, 3), strides=2, activation=activation, padding='same', name='upsample_dvf2')(upsample) upsample = Conv3DTranspose(64, (3, 3, 3), strides=2, activation=activation, padding='same', name='upsample_dvf3')(upsample) upsample = BatchNormalization(axis=-1, momentum=momentum)(upsample) dvf = Conv3D(64, kernel_size=3, activation=activation, padding='same', name='dvf_64features')(upsample) #dvf = Conv3D(3, kernel_size=3, activation=activation, padding='same', name='dvf')(dvf) dvf = Conv3D(3, kernel_size=1, activation=None, padding='same', name='dvf')(dvf) # Callbacks reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.00001) history = LossHistory() checkpoint = ModelCheckpoint('best_model.h5', monitor='val_loss', verbose=1, save_best_only=True, period=1) tensorboard = TrainValTensorBoard(write_graph=False) callbacks = [reduce_lr, history, checkpoint, tensorboard] # Train model = Model(inputs=[fixed_image, moving_image], outputs=dvf) for layer in model.layers: print(layer.name, layer.output_shape) # print(model.summary()) plot_model(model, to_file='model.png') #Adam = optimizers.Adam(lr=0.001) model.compile(optimizer='Adam', loss='mean_squared_error') model.fit_generator( generator=helper.generator(inputs=[train_fixed, train_moving], label=train_dvf, batch_size=batch_size), steps_per_epoch=math.ceil(train_fixed.shape[0] / batch_size), epochs=75, verbose=1, callbacks=callbacks, validation_data=helper.generator( inputs=[validation_fixed, validation_moving], label=validation_dvf, batch_size=batch_size), validation_steps=math.ceil(validation_fixed.shape[0] / batch_size)) # accuracy = model.evaluate_generator(generator( # inputs=[validation_fixed, validation_moving], label=validation_dvf, batch_size=batch_size), steps=1, verbose=1) model.save('model.h5') """Testing to see where issue with DVF is """ dvf = model.predict(helper.generator([test_fixed, test_moving], label=test_dvf, predict=True, batch_size=1), steps=math.ceil(test_fixed.shape[0] / batch_size), verbose=1) helper.write_images(test_fixed, test_fixed_affine, file_path='./outputs/', file_prefix='fixed') helper.write_images(test_moving, test_moving_affine, file_path='./outputs/', file_prefix='moving') helper.write_images(dvf, test_fixed_affine, file_path='./outputs/', file_prefix='dvf')
def get_data(fixed_dir, moving_dir, dvf_dir): # Load data from directory fixed, moving, dvf = load.data_reader(fixed_dir, moving_dir, dvf_dir) fixed_array, fixed_affine = fixed.get_data() return fixed_array, fixed_affine
def train(tileSize=64, numPuzzles=23, num_permutations=10, batch_size=16): # On server with PET and PCT in image_dir = "/hepgpu3-data1/dmcsween/Data128/ResampleData/PlanningCT" print("Load Data") image_data, __image, __label = load.data_reader(image_dir, image_dir, image_dir) image_array, image_affine = image_data.get_data() moving_array, moving_affine = __image.get_data() dvf_array, dvf_affine = __label.get_data() """ list_avail_keys = help.get_moveable_keys(image_array) hamming_set = pd.read_csv( "hamming_set_PCT.txt", sep=",", header=None) """ avail_keys = pd.read_csv("avail_keys_both.txt", sep=",", header=None) print("Len keys:", len(avail_keys)) list_avail_keys = [(avail_keys.loc[i, 0], avail_keys.loc[i, 1], avail_keys.loc[i, 2]) for i in range(len(avail_keys))] print(list_avail_keys) # Get hamming set print("Load hamming Set") hamming_set = pd.read_csv("hamming_set.txt", sep=",", header=None) #hamming_set = hamming_set.loc[:9] print("Ham Len", len(hamming_set)) print(hamming_set) fixed_array, moving_array, dvf_array = helper.shuffle_inplace( image_array, moving_array, dvf_array) # Ignore moving and dvf validation_dataset, validation_moving, validation_dvf, train_dataset, train_moving, train_dvf = helper.split_data( fixed_array, moving_array, dvf_array, split_ratio=0.15) normalised_train = helper.norm(train_dataset) normalised_val = helper.norm(validation_dataset) # Output all data from a training session into a dated folder outputPath = "./logs" # hamming_list = [0, 1, 2, 3, 4] # img_idx = [0, 1, 2, 3, 4] # callbacks checkpoint = ModelCheckpoint(outputPath + '/best_model.h5', monitor='val_acc', verbose=1, save_best_only=True, period=1) reduce_lr_plateau = ReduceLROnPlateau(monitor='val_acc', patience=10, verbose=1) # early_stop = EarlyStopping(monitor='val_acc', patience=5, verbose=1) tensorboard = TrainValTensorBoard(write_graph=False) callbacks = [checkpoint, reduce_lr_plateau, tensorboard] # BUILD Model model = createSharedAlexnet3D_onemodel() # for layer in model.layers: # print(layer.name, layer.output_shape) opt = optimizers.SGD(lr=0.01) plot_model(model, to_file='model.png') print(model.summary()) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) model.fit_generator(generator=gen.generator(normalised_train, list_avail_keys, hamming_set, batch_size=batch_size, N=num_permutations), epochs=1000, verbose=1, steps_per_epoch=normalised_train.shape[0] // batch_size, validation_data=gen.generator(normalised_val, list_avail_keys, hamming_set, batch_size=batch_size, N=num_permutations), validation_steps=normalised_val.shape[0] // batch_size, callbacks=callbacks, shuffle=False) model.save('model_best.h5')
def inference(): print('Load data to Transform') fixed_predict, moving_predict, dvf_label = load.data_reader( fixed_dir, moving_dir, dvf_dir) print('Turn into numpy arrays') fixed_array, fixed_affine = fixed_predict.get_data() moving_array, moving_affine = moving_predict.get_data() dvf_array, dvf_affine = dvf_label.get_data(is_image=False) print('Shuffle') fixed_array, moving_array, dvf_array = helper.shuffle_inplace( fixed_array, moving_array, dvf_array) fixed_affine, moving_affine, dvf_affine = helper.shuffle_inplace( fixed_affine, moving_affine, dvf_affine) print('Split into test/training data') test_fixed, test_moving, test_dvf, train_fixed, train_moving, train_dvf = helper.split_data( fixed_array, moving_array, dvf_array, split_ratio=0.05) test_fixed_affine, test_moving_affine, test_dvf_affine, train_fixed_affine, train_moving_affine, train_dvf_affine = helper.split_data( fixed_affine, moving_affine, dvf_affine, split_ratio=0.05) print('Load models') print("Fixed input", test_fixed.shape) print("Moving input", test_moving.shape) model = load_model('best_model.h5') model.compile(optimizer='Adam', loss='mean_squared_error', metrics=["accuracy"]) dvf = model.predict_generator(helper.generator([test_fixed, test_moving], label=test_dvf, predict=True, batch_size=batch_size), steps=math.ceil(test_fixed.shape[0] / batch_size), verbose=1) test_loss = model.evaluate_generator( helper.generator([test_fixed, test_moving], label=test_dvf, predict=True, batch_size=batch_size), steps=math.ceil(test_fixed.shape[0] / batch_size), verbose=1) print('Save DVF') # Save images helper.write_images(test_fixed, test_fixed_affine, file_path='./outputs/', file_prefix='fixed') helper.write_images(test_moving, test_moving_affine, file_path='./outputs/', file_prefix='moving') helper.write_images(dvf, test_fixed_affine, file_path='./outputs/', file_prefix='dvf') print("Test Loss:", test_loss) # Save warped print("Test Loss Shape:", test_loss.shape)
def infer(batch_size=2): # On server with PET and PCT in image_dir = "/hepgpu3-data1/dmcsween/DataTwoWay128/fixed" #image_dir = "/hepgpu3-data1/dmcsween/Data128/ResampleData/PlanningCT" inputPath = "./all_logs/both_logs100perms" #inputPath = './mixed_hamming_logs' print("Load Data") image_data, __image, __label = load.data_reader(image_dir, image_dir, image_dir) image_array, image_affine = image_data.get_data() moving_array, moving_affine = __image.get_data() dvf_array, dvf_affine = __label.get_data() """ list_avail_keys = help.get_moveable_keys(image_array) # Get hamming set print("Load hamming Set") hamming_set = pd.read_csv("hamming_set.txt", sep=",", header=None) print(hamming_set) """ avail_keys = pd.read_csv("avail_keys_both.txt", sep=",", header=None) list_avail_keys = [(avail_keys.loc[i, 0], avail_keys.loc[i, 1], avail_keys.loc[i, 2]) for i in range(len(avail_keys))] # Get hamming set print("Load hamming Set") hamming_set = pd.read_csv("mixed_hamming_set.txt", sep=",", header=None) hamming_set = hamming_set.loc[:99] # Ignore moving and dvf test_dataset, validation_moving, validation_dvf, trainVal_dataset, train_moving, train_dvf = helper.split_data( image_array, moving_array, dvf_array, split_ratio=0.05) print("Valid Shape:", test_dataset.shape) normalised_dataset = helper.normalise(test_dataset) print('Load models') scores = np.zeros((15, 20)) blank_idx = [n for n in range(23)] print(blank_idx) K.clear_session() model = load_model(inputPath + '/final_model.h5') opt = optimizers.SGD(lr=0.01) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=["accuracy"]) idx_list = [] # i is border size for i in range(15): for j in range(20): idx_list = [10, 10] print("Pre Eval:", i, j) myPredictGen = gen.evaluate_generator(normalised_dataset, list_avail_keys, hamming_set, hamming_idx=idx_list, batch_size=batch_size, blank_idx=blank_idx, border_size=i, image_idx=[10, 10], full_crop=False, out_crop=True, inner_crop=False, N=100) accuracy = model.evaluate_generator(generator=myPredictGen, steps=5, verbose=1) print("%s: %.2f%%" % (model.metrics_names[1], accuracy[1] * 100)) scores[i, j] = (accuracy[1] * 100) np.savetxt("scores_diff_border.txt", scores, delimiter=",", fmt='%1.2i') avg_score = np.mean(scores, axis=1) avg_perm = np.mean(scores, axis=0) error_score = np.std(scores, axis=1) error_perm = np.std(scores, axis=0) var_score = np.var(scores, axis=1) var_perm = np.var(scores, axis=0) print("Scores:", avg_score, error_score, var_score) print("Perms:", avg_perm, error_perm, var_perm) print("Done")