import xgboost as xgb from sklearn.model_selection import RandomizedSearchCV,GridSearchCV,ShuffleSplit from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from dataLoader import Dataloader import matplotlib.pyplot as plt import seaborn as sns #Load Data dl = Dataloader(normalization=True, select_features=["speed_max", "speed_mean", "speed_median", "speed_std"]) X_train, y_train = dl.getTrain() X_test, y_test = dl.getTest() X_validate, y_validate = dl.getValidate() print(X_train.shape) print(y_train.shape) classes = { "walk":0, "bike":1, "bus":2, "taxi/car": 3, "subway/train":4 } inv_map = {v: k for k, v in classes.items()} #Base Model
plt.axis('off') plt.style.use('ggplot') # if want to use the default style, set 'classic' plt.rcParams['ytick.right'] = True plt.rcParams['ytick.labelright']= True plt.rcParams['ytick.left'] = False plt.rcParams['ytick.labelleft'] = False plt.rcParams['font.family'] = 'Arial' modelname = 'pre-1' seed = 7 np.random.seed(seed) # ............................................................................. dl = Dataloader(normalization=True, noise_removal=True) x_train, y_train = dl.getTrain() x_val, y_val = dl.getValidate() #enc = OneHotEncoder(categories=[classes],handle_unknown='ignore',drop=[0]) y_train = to_categorical(y_train) y_val = to_categorical(y_val) x_train = np.expand_dims(x_train,axis=2) x_val = np.expand_dims(x_val,axis=2) dat = tf.convert_to_tensor(x_train) lbl = tf.convert_to_tensor(y_train) ds = tf.data.Dataset.from_tensor_slices((dat, lbl)) dataset = ds.shuffle(1000).batch(1).repeat() dat = tf.convert_to_tensor(x_val) lbl = tf.convert_to_tensor(y_val)