outDir = "/home/sheng/mountData/unaryDepthInference/" runDir = outDir + "/testRun/" plotDir = runDir + "plots/" if not os.path.exists(runDir): os.makedirs(runDir) if not os.path.exists(plotDir): os.makedirs(plotDir) load = True loadFile = outDir + "/saved/saved.ckpt" #Get object from which tensorflow will pull data from testDataObj = kittiObj(imageList, depthList) #Allocate obj to calc mean/std trainDataObj = kittiObj(trainImageList, trainDepthList) #Set mean/std on test set testDataObj.setMeanVar(trainDataObj.mean, trainDataObj.std) vggFile = "/home/sheng/mountData/pretrain/imagenet-vgg-f.mat" #Allocate tf obj with test data tfObj = unaryDepthInference(testDataObj, vggFile) #Load weights if(load): tfObj.loadModel(loadFile) else:
outDir = "/home/sheng/mountData/unaryDepthInference/" runDir = outDir + "/run0/" plotDir = runDir + "plots/" if not os.path.exists(runDir): os.makedirs(runDir) if not os.path.exists(plotDir): os.makedirs(plotDir) load = False loadFile = outDir + "/saved/saved.ckpt" #Get object from which tensorflow will pull data from trainDataObj = kittiObj(trainImageList, trainDepthList) testDataObj = kittiObj(testImageList, testDepthList) testDataObj.setMeanVar(trainDataObj.mean, trainDataObj.std) ##Get all segments #(drop, gt) = dataObj.allSegments() #plotImg(dataObj.currSegments, dataObj.segLabels, gt) #plotImg(dataObj.currSegments, dataObj.segLabels, np.log(gt)) # #plt.hist(gt) #plt.show() # #plt.hist(np.log(gt)) #plt.show() #
outDir = "/home/sheng/mountData/unaryDepthInference/" runDir = outDir + "/testRun/" plotDir = runDir + "plots/" if not os.path.exists(runDir): os.makedirs(runDir) if not os.path.exists(plotDir): os.makedirs(plotDir) load = True loadFile = outDir + "/saved/saved.ckpt" #Get object from which tensorflow will pull data from testDataObj = kittiObj(imageList, depthList) #Allocate obj to calc mean/std trainDataObj = kittiObj(trainImageList, trainDepthList) #Set mean/std on test set testDataObj.setMeanVar(trainDataObj.mean, trainDataObj.std) vggFile = "/home/sheng/mountData/pretrain/imagenet-vgg-f.mat" #Allocate tf obj with test data tfObj = unaryDepthInference(testDataObj, vggFile) #Load weights if (load): tfObj.loadModel(loadFile) else: