def plotIntermediateResults(self): print("\n--- Plotting results ---\n") # Individual intracellular traces if self.plot_intracellular and self.record_Vm: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) start_pos = int(self.start_time / self.newSimulation.Params['resolution']) time = self.newSimulation.time[start_pos:len(self.newSimulation. time)] data_analysis.membranePotentials( self.start_time, self.newSimulation.Params['resolution'], self.simtime, self.potentials, self.layers_to_record, self.labels, self.selected_cell, self.intracellular_rows, self.intracellular_cols, self.intracellular_starting_row, self.intracellular_starting_col, "thalamocortical_system") # PSTHs if self.plot_PSTH: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) start_pos = int(self.start_time / self.newSimulation.Params['resolution']) time = self.newSimulation.time[start_pos:len(self.newSimulation. time)] data_analysis.PSTH( self.start_time, self.newSimulation.Params['resolution'], self.simtime, self.spikes, self.layers_to_record, self.labels, self.selected_cell, self.PSTH_rows, self.PSTH_cols, self.PSTH_starting_row, self.PSTH_starting_col, self.trials, self.PSTHs, self.bin_size, "thalamocortical_system") plt.show()
def plotIntermediateResults(self): print("\n--- Plotting results ---\n") # Individual intracellular traces if self.plot_intracellular: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) start_pos = int(self.start_time / self.newSimulation.Params['resolution']) time = self.newSimulation.time[start_pos:len(self.newSimulation. time)] ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (0, 0)) ax.plot( time, self.L_cone_input[self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('Input') # Save input stimulus np.savetxt( '../../data/retina/input/L_input', self.L_cone_input[self.selected_cell, start_pos:len(self.newSimulation.time)]) ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (0, 1)) ax.plot( time, self.newSimulation.cone_response[ 0, self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('L cones') # Save cone response np.savetxt( '../../data/retina/input/L_cone', self.newSimulation.cone_response[ 0, self.selected_cell, start_pos:len(self.newSimulation.time)]) ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (0, 2)) ax.plot( time, self.newSimulation.cone_response[ 1, self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('M cones') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (0, 3)) ax.plot( time, self.newSimulation.cone_response[ 2, self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('S cones') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (1, 0)) ax.plot( time, self.newSimulation.L_cone_metabotropic[ self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('L cones metabotropic') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (1, 1)) ax.plot( time, self.newSimulation.M_cone_metabotropic[ self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('M cones metabotropic') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (1, 2)) ax.plot( time, self.newSimulation.S_cone_metabotropic[ self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('S cones metabotropic') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (1, 3)) ax.plot( time, self.newSimulation.L_cone_ionotropic[ self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('L cones ionotropic') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (2, 0)) ax.plot( time, self.newSimulation.M_cone_ionotropic[ self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('M cones ionotropic') ax = plt.subplot2grid( (self.intracellular_rows, self.intracellular_cols), (2, 1)) ax.plot( time, self.newSimulation.S_cone_ionotropic[ self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('S cones ionotropic') data_analysis.membranePotentials( self.start_time, self.newSimulation.Params['resolution'], self.simtime, self.potentials, self.layers_to_record, self.labels, self.selected_cell, self.intracellular_rows, self.intracellular_cols, self.intracellular_starting_row, self.intracellular_starting_col, "retina") # PSTHs if self.plot_PSTH: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) start_pos = int(self.start_time / self.newSimulation.Params['resolution']) time = self.newSimulation.time[start_pos:len(self.newSimulation. time)] ax = plt.subplot2grid((self.PSTH_rows, self.PSTH_cols), (0, 0)) ax.plot( time, self.L_cone_input[self.selected_cell, start_pos:len(self.newSimulation.time)]) ax.set_title('Input') data_analysis.PSTH( self.start_time, self.newSimulation.Params['resolution'], self.simtime, self.spikes, self.s_layers_to_record, self.sp_labels, self.selected_cell, self.PSTH_rows, self.PSTH_cols, self.PSTH_starting_row, self.PSTH_starting_col, self.trials, self.PSTHs, self.bin_size, "retina") # Topographical plot if self.plot_topographical: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) if self.topographical_isSpikes: recs = self.spikes else: recs = self.potentials data_analysis.topographical( fig, self.newSimulation.Params['N'], self.topographical_time_intervals, self.newSimulation.Params['resolution'], self.simtime, recs, self.top_layers_to_record, self.top_labels, self.topographical_rows, self.topographical_cols, self.topographical_V_mins, self.topographical_V_maxs, self.topographical_isSpikes, self.trials, self.top_PSTHs, self.bin_size, self.top_PSTH_index, 0) # Video sequence # data_analysis.videoSeq(self.newSimulation.Params['N'],self.inputIm, # self.simtime,self.newSimulation.Params['resolution'],self.intracellular_video_step) plt.show()
def plotResults(self): print("\n--- Plotting results ---\n") # Individual intracellular traces if self.plot_intracellular and self.record_Vm: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) start_pos = int(self.start_time / self.newSimulation.Params['resolution']) time = self.newSimulation.time[start_pos:len(self.newSimulation. time)] data_analysis.membranePotentials( self.start_time, self.newSimulation.Params['resolution'], self.simtime, self.potentials, self.layers_to_record, self.labels, self.selected_cell, self.intracellular_rows, self.intracellular_cols, self.intracellular_starting_row, self.intracellular_starting_col, "thalamocortical_system") # PSTHs if self.plot_PSTH: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) start_pos = int(self.start_time / self.newSimulation.Params['resolution']) time = self.newSimulation.time[start_pos:len(self.newSimulation. time)] data_analysis.PSTH( self.start_time, self.newSimulation.Params['resolution'], self.simtime, self.spikes, self.layers_to_record, self.labels, self.selected_cell, self.PSTH_rows, self.PSTH_cols, self.PSTH_starting_row, self.PSTH_starting_col, self.trials, self.PSTHs, self.bin_size, "thalamocortical_system") # Topographical plot if self.plot_topographical: fig = plt.figure() fig.subplots_adjust(hspace=1.5) fig.subplots_adjust(wspace=0.4) data_analysis.topographical( fig, self.newSimulation.Params['N_cortex'], self.topographical_time_intervals, self.newSimulation.Params['resolution'], self.simtime, self.spikes, self.top_layers_to_record, self.top_labels, self.topographical_rows, self.topographical_cols, self.topographical_V_mins, self.topographical_V_maxs, self.topographical_isSpikes, self.trials, self.top_PSTHs, self.bin_size, self.top_PSTH_index, self.layer_sizes_top) data_analysis.topographical( fig, self.newSimulation.Params['N_cortex'], self.topographical_time_intervals, self.newSimulation.Params['resolution'], self.simtime, self.spikes, self.pop_layers_to_record, self.pop_labels, self.topographical_rows, self.topographical_cols, self.pop_V_mins, self.pop_V_maxs, self.topographical_isSpikes, self.trials, self.top_PSTHs, self.bin_size, self.pop_PSTH_index, self.layer_sizes_pop, True) plt.show()