예제 #1
0
def evaluate_dev(epoch):
    esnli_net.eval()
    global val_ppl_best, stop_training, last_improvement_epoch

    cum_dev_ppl = 0
    cum_dev_n_words = 0

    print('\DEV : Epoch {0}'.format(epoch))

    # eSNLI
    s1 = snli_dev['s1']
    s2 = snli_dev['s2']
    expl_1 = snli_dev['expl_1']
    expl_2 = snli_dev['expl_2']
    expl_3 = snli_dev['expl_3']
    label = snli_dev['label']

    for i in range(0, len(s1), params.eval_batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + params.eval_batch_size],
                                     word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + params.eval_batch_size],
                                     word_vec)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())

        # print example
        if i % params.print_every == 0:
            print current_run_dir, '\n'
            print "SNLI DEV example"
            print "Sentence1:  ", ' '.join(s1[i]), " LENGTH: ", s1_len[0]
            print "Sentence2:  ", ' '.join(s2[i]), " LENGTH: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[i], NLI_DIC_LABELS)

        for index in range(1, 4):
            expl = eval("expl_" + str(index))
            input_expl_batch, _ = get_batch(expl[i:i + params.eval_batch_size],
                                            word_vec)
            input_expl_batch = Variable(input_expl_batch[:-1].cuda())
            if i % params.print_every == 0:
                print "Explanation " + str(index) + " :  ", ' '.join(expl[i])
            tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
                expl[i:i + params.eval_batch_size], word_index)
            assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
                tgt_expl_batch.dim())
            tgt_expl_batch = Variable(tgt_expl_batch).cuda()
            if i % params.print_every == 0:
                print "Target expl " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index,
                        tgt_expl_batch[:, 0]), " LENGHT: ", lens_tgt_expl[0]

            # model forward
            out_expl = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                                 input_expl_batch,
                                 'teacher',
                                 visualize=False)
            # ppl
            loss_expl = criterion_expl(
                out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
                tgt_expl_batch.view(
                    tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
            cum_dev_n_words += lens_tgt_expl.sum()
            cum_dev_ppl += loss_expl.data[0]
            answer_idx = torch.max(out_expl, 2)[1]
            if i % params.print_every == 0:
                print "Decoded explanation " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index, answer_idx[:, 0])
                print "\n"

    dev_ppl.append(math.exp(cum_dev_ppl / cum_dev_n_words))
    current_best_model_path = None

    if dev_ppl[-1] < val_ppl_best:
        last_improvement_epoch = epoch
        print('saving model at epoch {0}'.format(epoch))
        # save with torch.save
        best_model_prefix = os.path.join(current_run_dir, 'best_devppl_')
        current_best_model_path = best_model_prefix + '_devPPL{0:.3f}__epoch_{1}_model.pt'.format(
            dev_ppl[-1], epoch)
        torch.save(esnli_net, current_best_model_path)
        for f in glob.glob(best_model_prefix + '*'):
            if f != current_best_model_path:
                os.remove(f)
        # also save model.state_dict()
        best_state_dict_prefix = os.path.join(current_run_dir,
                                              'state_dict_best_devppl_')
        current_best_model_state_dict_path = best_state_dict_prefix + '_devPPL{0:.3f}__epoch_{1}_model.pt'.format(
            dev_ppl[-1], epoch)
        state = {
            'model_state': esnli_net.state_dict(),
            'config_model': config_nli_model,
            'params': params
        }
        torch.save(state, current_best_model_state_dict_path)
        for f in glob.glob(best_state_dict_prefix + '*'):
            if f != current_best_model_state_dict_path:
                os.remove(f)
        val_ppl_best = dev_ppl[-1]

    else:
        if 'sgd' in params.optimizer:
            optimizer.param_groups[0][
                'lr'] = optimizer.param_groups[0]['lr'] / params.lrshrink
            print('Shrinking lr by : {0}. New lr = {1}'.format(
                params.lrshrink, optimizer.param_groups[0]['lr']))
            if optimizer.param_groups[0]['lr'] < params.minlr:
                stop_training = True
                print "Stopping training because LR < ", params.minlr

        # for any optimizer early stopping
        if (epoch - last_improvement_epoch > params.early_stopping_epochs):
            stop_training = True
            print "Stopping training because no more improvement done in the last ", params.early_stopping_epochs, " epochs"

    return current_best_model_path
예제 #2
0
def trainepoch(epoch):
    print('\nTRAINING : Epoch ' + str(epoch))
    esnli_net.train()

    expl_costs = []
    cum_n_words = 0
    cum_ppl = 0

    # shuffle the data
    permutation = np.random.permutation(len(train['s1']))

    s1 = train['s1'][permutation]
    s2 = train['s2'][permutation]
    expl_1 = train['expl_1'][permutation]
    label = train['label'][permutation]

    optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] * params.decay if epoch>1\
     and 'sgd' in params.optimizer else optimizer.param_groups[0]['lr']
    print('Learning rate : {0}'.format(optimizer.param_groups[0]['lr']))

    for stidx in range(0, len(s1), params.batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[stidx:stidx + params.batch_size],
                                     word_vec)
        s2_batch, s2_len = get_batch(s2[stidx:stidx + params.batch_size],
                                     word_vec)
        input_expl_batch, _ = get_batch(
            expl_1[stidx:stidx + params.batch_size], word_vec)

        # eliminate last input to explanation because we wouldn't need to input </s> and we need same number of input and output
        input_expl_batch = input_expl_batch[:-1]

        # make them variables and set them on cuda
        s1_batch, s2_batch, input_expl_batch = Variable(
            s1_batch.cuda()), Variable(s2_batch.cuda()), Variable(
                input_expl_batch.cuda())

        # taget expl is a translation of one timestep
        tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
            expl_1[stidx:stidx + params.batch_size], word_index)
        assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
            tgt_expl_batch.dim())
        tgt_expl_batch = Variable(tgt_expl_batch).cuda()

        # model forward train
        out_expl = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                             input_expl_batch,
                             'teacher',
                             visualize=False)
        answer_idx = torch.max(out_expl, 2)[1]

        # print example
        if stidx % params.print_every == 0:
            print current_run_dir, '\n'
            print 'epoch: ', epoch
            print "Sentence1:  ", ' '.join(s1[stidx]), " LENGTH: ", s1_len[0]
            print "Sentence2:  ", ' '.join(s2[stidx]), " LENGTH: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[stidx],
                                                    NLI_DIC_LABELS)
            print "Explanation:  ", ' '.join(expl_1[stidx])
            print "Target expl:  ", get_sentence_from_indices(
                word_index, tgt_expl_batch[:,
                                           0]), " LENGTH: ", lens_tgt_expl[0]
            print "Decoded explanation:  ", get_sentence_from_indices(
                word_index, answer_idx[:, 0]), "\n\n\n"

        # loss expl; out_expl is T x bs x vocab_sizes, tgt_expl_batch is T x bs
        loss_expl = criterion_expl(
            out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
            tgt_expl_batch.view(
                tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
        expl_costs.append(loss_expl.data[0])
        cum_n_words += lens_tgt_expl.sum()
        cum_ppl += loss_expl.data[0]

        # backward
        optimizer.zero_grad()
        loss_expl.backward()

        # infersent version of gradient clipping
        shrink_factor = 1
        current_bs = len(s1_len)
        # total grads norm
        total_norm = 0
        for name, p in esnli_net.named_parameters():
            if p.requires_grad:
                p.grad.data.div_(current_bs)
                total_norm += p.grad.data.norm()**2
        total_norm = np.sqrt(total_norm)
        total_norms.append(total_norm)

        # encoder grads norm
        enc_norm = 0
        for p in esnli_net.encoder.parameters():
            if p.requires_grad:
                enc_norm += p.grad.data.norm()**2
        enc_norm = np.sqrt(enc_norm)
        enc_norms.append(enc_norm)

        if total_norm > params.max_norm:
            shrink_factor = params.max_norm / total_norm
        current_lr = optimizer.param_groups[0][
            'lr']  # current lr (no external "lr", for adam)
        optimizer.param_groups[0][
            'lr'] = current_lr * shrink_factor  # just for update

        # optimizer step
        optimizer.step()
        optimizer.param_groups[0]['lr'] = current_lr

        # print and reset losses
        if len(expl_costs) == params.avg_every:
            train_expl_costs.append(np.mean(expl_costs))
            train_ppl.append(math.exp(cum_ppl / cum_n_words))
            print '{0} ; epoch: {1}, loss : {2} ; train ppl : {3}'.format(
                stidx, epoch, round(train_expl_costs[-1], 2),
                round(train_ppl[-1], 2))
            expl_costs = []
            cum_n_words = 0
            cum_ppl = 0
예제 #3
0
def eval_datasets_without_expl(esnli_net, expl_to_labels_net, which_set, data,
                               word_vec, word_vec_expl, word_emb_dim,
                               batch_size, print_every, current_run_dir):

    dict_labels = NLI_DIC_LABELS

    esnli_net.eval()
    correct = 0.

    s1 = data['s1']
    s2 = data['s2']
    label = data['label']

    headers = [
        "gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl"
    ]
    expl_csv = os.path.join(
        current_run_dir,
        time.strftime("%d:%m") + "_" + time.strftime("%H:%M:%S") + "_" +
        which_set + ".csv")
    remove_file(expl_csv)
    expl_f = open(expl_csv, "a")
    writer = csv.writer(expl_f)
    writer.writerow(headers)

    for i in range(0, len(s1), batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + batch_size], word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + batch_size], word_vec)

        current_bs = s1_batch.size(1)
        assert_sizes(s1_batch, 3, [s1_batch.size(0), current_bs, word_emb_dim])
        assert_sizes(s2_batch, 3, [s2_batch.size(0), current_bs, word_emb_dim])

        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())
        tgt_label_batch = Variable(torch.LongTensor(label[i:i +
                                                          batch_size])).cuda()

        expl_t0 = Variable(
            torch.from_numpy(word_vec['<s>']).float().unsqueeze(0).expand(
                current_bs, word_emb_dim).unsqueeze(0)).cuda()
        assert_sizes(expl_t0, 3, [1, current_bs, word_emb_dim])

        # model forward
        pred_expls = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                               expl_t0,
                               mode="forloop",
                               visualize=False)

        pred_expls_with_sos = np.array(
            [['<s>'] + [word for word in sent.split()] + ['</s>']
             for sent in pred_expls])
        pred_expl_batch, pred_expl_len = get_batch(pred_expls_with_sos,
                                                   word_vec_expl)
        pred_expl_batch = Variable(pred_expl_batch.cuda())

        out_lbl = expl_to_labels_net((pred_expl_batch, pred_expl_len))

        # accuracy
        pred = out_lbl.data.max(1)[1]
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()

        # write csv row of predictions
        # Look up for the headers order
        for j in range(len(pred_expls)):
            row = []
            row.append(get_key_from_val(label[i + j], dict_labels))
            row.append(' '.join(s1[i + j][1:-1]))
            row.append(' '.join(s2[i + j][1:-1]))
            row.append(get_key_from_val(pred[j], dict_labels))
            row.append(pred_expls[j])
            writer.writerow(row)

        # print example
        if i % print_every == 0:
            print which_set.upper() + " example: "
            print "Premise:  ", ' '.join(s1[i]), " LENGHT: ", s1_len[0]
            print "Hypothesis:  ", ' '.join(s2[i]), " LENGHT: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[i], dict_labels)
            print "Predicted label:  ", get_key_from_val(pred[0], dict_labels)
            print "Predicted explanation:  ", pred_expls[0], "\n\n\n"

    eval_acc = round(100 * correct / len(s1), 2)
    print which_set.upper() + " no train ", eval_acc, '\n\n\n'
    expl_f.close()
    return eval_acc
예제 #4
0
def evaluate_snli_final(esnli_net, expl_to_labels_net, criterion_expl, dataset,
                        data, snli_dev_no_unk, snli_test_no_unk, word_vec,
                        word_index, batch_size, print_every, current_run_dir,
                        visualize):
    assert dataset in ['snli_dev', 'snli_test']
    print dataset.upper()
    esnli_net.eval()

    correct = 0.
    cum_test_ppl = 0
    cum_test_n_words = 0

    headers = [
        "gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl",
        "Expl_1", "Expl_2", "Expl_3"
    ]
    expl_csv = os.path.join(
        current_run_dir,
        time.strftime("%d:%m") + "_" + time.strftime("%H:%M:%S") + "_" +
        dataset + ".csv")
    remove_file(expl_csv)
    expl_f = open(expl_csv, "a")
    writer = csv.writer(expl_f)
    writer.writerow(headers)

    s1 = data['s1']
    s2 = data['s2']
    expl_1 = data['expl_1']
    expl_2 = data['expl_2']
    expl_3 = data['expl_3']
    label = data['label']

    for i in range(0, len(s1), batch_size):
        #print "\n\n\n i ", i
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + batch_size], word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + batch_size], word_vec)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())
        tgt_label_batch = Variable(torch.LongTensor(label[i:i +
                                                          batch_size])).cuda()

        # print example
        if i % print_every == 0:
            print "Final SNLI example from " + dataset
            print "Sentence1:  ", ' '.join(s1[i]), " LENGHT: ", s1_len[0]
            print "Sentence2:  ", ' '.join(s2[i]), " LENGHT: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[i], NLI_DIC_LABELS)

        out_lbl = [0, 1, 2, 3]
        for index in range(1, 4):
            expl = eval("expl_" + str(index))
            input_expl_batch, _ = get_batch(expl[i:i + batch_size], word_vec)
            input_expl_batch = Variable(input_expl_batch[:-1].cuda())
            if i % print_every == 0:
                print "Explanation " + str(index) + " :  ", ' '.join(expl[i])
            tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
                expl[i:i + batch_size], word_index)
            assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
                tgt_expl_batch.dim())
            tgt_expl_batch = Variable(tgt_expl_batch).cuda()
            if i % print_every == 0:
                print "Target expl " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index,
                        tgt_expl_batch[:, 0]), " LENGHT: ", lens_tgt_expl[0]

            # model forward, tgt_labels is still None bcs in test mode we get the predicted labels
            out_expl = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                                 input_expl_batch,
                                 mode="teacher",
                                 visualize=False)
            # ppl
            loss_expl = criterion_expl(
                out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
                tgt_expl_batch.view(
                    tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
            cum_test_n_words += lens_tgt_expl.sum()
            cum_test_ppl += loss_expl.data[0]
            answer_idx = torch.max(out_expl, 2)[1]
            if i % print_every == 0:
                print "Decoded explanation " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index, answer_idx[:, 0])
                print "\n"

        pred_expls = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                               input_expl_batch,
                               mode="forloop",
                               visualize=visualize)
        if visualize:
            weights_1 = pred_expls[1]
            weights_2 = pred_expls[2]
            pred_expls = pred_expls[0]

            # plot attention weights
            sentence1_split = s1[i]
            #print "sentence1_split ", sentence1_split
            sentence2_split = s2[i]
            #print "sentence2_split ", sentence2_split
            pred_explanation_split = pred_expls[0].split()
            #print "pred_explanation_split ", pred_explanation_split
            #print " weights_1 ", weights_1.size()
            #print " weights_2 ", weights_2.size()
            #print "weights_1[0:len(sentence1_split) ", weights_1[:, :len(sentence1_split)].size()
            #print "weights_2[0:len(sentence2_split) ", weights_2[:, :len(sentence2_split)].size()
            all_weights = torch.cat([
                weights_1[:, :len(sentence1_split)],
                weights_2[:, :len(sentence2_split)]
            ], 1).transpose(1, 0)
            # size: (len_p + len_h) x current_T_dec
            all_weights = all_weights.data.cpu().numpy()
            # yaxis is the concatenation of premise and hypothesis
            y = np.array(range(len(sentence1_split) + len(sentence2_split)))
            #print "len(sentence1_split) + len(sentence2_split) ", len(sentence1_split) + len(sentence2_split)
            my_yticks = np.append(sentence1_split, sentence2_split)
            #print "my_yticks ", my_yticks
            # x axis is the pred expl
            x = np.array(range(len(pred_explanation_split)))
            #print "len(pred_explanation_split) ", len(pred_explanation_split)
            my_xticks = pred_explanation_split
            plt.xticks(x, my_xticks)
            plt.xticks(rotation=90)
            plt.yticks(y, my_yticks)
            plt.imshow(all_weights, cmap="gray", vmin=0, vmax=1)
            plt.savefig(os.path.join(
                current_run_dir,
                time.strftime("%d:%m") + "_" + time.strftime("%H:%M:%S") +
                "_att_" + str(i) + ".png"),
                        dpi=1000)
            #plt.show()

        if i % print_every == 0:
            print "Fully decoded explanation: ", pred_expls[0]

        pred_expls_with_sos = np.array(
            [['<s>'] + [word for word in sent.split()] + ['</s>']
             for sent in pred_expls])
        pred_expl_batch, pred_expl_len = get_batch(pred_expls_with_sos,
                                                   word_vec)
        pred_expl_batch = Variable(pred_expl_batch.cuda())

        out_lbl = expl_to_labels_net((pred_expl_batch, pred_expl_len))

        # accuracy
        pred = out_lbl.data.max(1)[1]
        if i % print_every == 0:
            print "Predicted label:  ", get_key_from_val(
                pred[0], NLI_DIC_LABELS), "\n\n\n"
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()

        # write csv row of predictions
        # headers = ["gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl", "Expl_1", "Expl_2", "Expl_3"]
        for j in range(len(pred_expls)):
            row = []
            row.append(get_key_from_val(label[i + j], NLI_DIC_LABELS))
            row.append(' '.join(s1[i + j][1:-1]))
            row.append(' '.join(s2[i + j][1:-1]))
            row.append(get_key_from_val(pred[j], NLI_DIC_LABELS))
            row.append(pred_expls[j])
            row.append(' '.join(expl_1[i + j][1:-1]))
            row.append(' '.join(expl_2[i + j][1:-1]))
            row.append(' '.join(expl_3[i + j][1:-1]))
            writer.writerow(row)

    expl_f.close()
    eval_acc = round(100 * correct / len(s1), 2)
    eval_ppl = math.exp(cum_test_ppl / cum_test_n_words)

    if dataset == 'snli_dev':
        bleu_score = bleu_prediction(expl_csv, snli_dev_no_unk)
    else:
        bleu_score = bleu_prediction(expl_csv, snli_test_no_unk)

    bleu_score = 100 * bleu_score
    print dataset.upper(
    ) + ' SNLI accuracy: ', eval_acc, 'bleu score: ', bleu_score, 'ppl: ', eval_ppl
    return eval_acc, round(bleu_score, 2), round(eval_ppl, 2)
예제 #5
0
def visualize_attention(esnli_net,
                        dataset,
                        data,
                        word_vec,
                        word_index,
                        current_run_dir,
                        batch_size=1):
    assert dataset in ['snli_dev', 'snli_test']
    print dataset.upper()
    esnli_net.eval()

    correct = 0.
    cum_test_ppl = 0
    cum_test_n_words = 0

    headers = [
        "gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl",
        "Expl_1", "Expl_2", "Expl_3"
    ]
    expl_csv = os.path.join(
        current_run_dir,
        time.strftime("%d:%m") + "_" + time.strftime("%H:%M:%S") + "_" +
        dataset + ".csv")
    remove_file(expl_csv)
    expl_f = open(expl_csv, "a")
    writer = csv.writer(expl_f)
    writer.writerow(headers)

    s1 = data['s1']
    s2 = data['s2']
    expl_1 = data['expl_1']
    expl_2 = data['expl_2']
    expl_3 = data['expl_3']
    label = data['label']

    for i in range(0, len(s1), batch_size):
        # prepare batch
        s1_batch, s1_len = get_batch(s1[i:i + batch_size], word_vec)
        s2_batch, s2_len = get_batch(s2[i:i + batch_size], word_vec)
        s1_batch, s2_batch = Variable(s1_batch.cuda()), Variable(
            s2_batch.cuda())
        tgt_label_batch = Variable(torch.LongTensor(label[i:i +
                                                          batch_size])).cuda()

        # print example
        if i % print_every == 0:
            print "Final SNLI example from " + dataset
            print "Sentence1:  ", ' '.join(s1[i]), " LENGHT: ", s1_len[0]
            print "Sentence2:  ", ' '.join(s2[i]), " LENGHT: ", s2_len[0]
            print "Gold label:  ", get_key_from_val(label[i], NLI_DIC_LABELS)

        out_lbl = [0, 1, 2, 3]
        for index in range(1, 4):
            expl = eval("expl_" + str(index))
            input_expl_batch, _ = get_batch(expl[i:i + batch_size], word_vec)
            input_expl_batch = Variable(input_expl_batch[:-1].cuda())
            if i % print_every == 0:
                print "Explanation " + str(index) + " :  ", ' '.join(expl[i])
            tgt_expl_batch, lens_tgt_expl = get_target_expl_batch(
                expl[i:i + batch_size], word_index)
            assert tgt_expl_batch.dim() == 2, "tgt_expl_batch.dim()=" + str(
                tgt_expl_batch.dim())
            tgt_expl_batch = Variable(tgt_expl_batch).cuda()
            if i % print_every == 0:
                print "Target expl " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index,
                        tgt_expl_batch[:, 0]), " LENGHT: ", lens_tgt_expl[0]

            # model forward, tgt_labels is still None bcs in test mode we get the predicted labels
            out_expl = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                                 input_expl_batch,
                                 mode="teacher")
            # ppl
            loss_expl = criterion_expl(
                out_expl.view(out_expl.size(0) * out_expl.size(1), -1),
                tgt_expl_batch.view(
                    tgt_expl_batch.size(0) * tgt_expl_batch.size(1)))
            cum_test_n_words += lens_tgt_expl.sum()
            cum_test_ppl += loss_expl.data[0]
            answer_idx = torch.max(out_expl, 2)[1]
            if i % print_every == 0:
                print "Decoded explanation " + str(
                    index) + " :  ", get_sentence_from_indices(
                        word_index, answer_idx[:, 0])
                print "\n"

        pred_expls = esnli_net((s1_batch, s1_len), (s2_batch, s2_len),
                               input_expl_batch,
                               mode="forloop")
        if i % print_every == 0:
            print "Fully decoded explanation: ", pred_expls[0]

        pred_expls_with_sos = np.array(
            [['<s>'] + [word for word in sent.split()] + ['</s>']
             for sent in pred_expls])
        pred_expl_batch, pred_expl_len = get_batch(pred_expls_with_sos,
                                                   word_vec)
        pred_expl_batch = Variable(pred_expl_batch.cuda())

        out_lbl = expl_to_labels_net((pred_expl_batch, pred_expl_len))

        # accuracy
        pred = out_lbl.data.max(1)[1]
        if i % print_every == 0:
            print "Predicted label:  ", get_key_from_val(
                pred[0], NLI_DIC_LABELS), "\n\n\n"
        correct += pred.long().eq(tgt_label_batch.data.long()).cpu().sum()

        # write csv row of predictions
        # headers = ["gold_label", "Premise", "Hypothesis", "pred_label", "pred_expl", "Expl_1", "Expl_2", "Expl_3"]
        for j in range(len(pred_expls)):
            row = []
            row.append(get_key_from_val(label[i + j], NLI_DIC_LABELS))
            row.append(' '.join(s1[i + j][1:-1]))
            row.append(' '.join(s2[i + j][1:-1]))
            row.append(get_key_from_val(pred[j], NLI_DIC_LABELS))
            row.append(pred_expls[j])
            row.append(' '.join(expl_1[i + j][1:-1]))
            row.append(' '.join(expl_2[i + j][1:-1]))
            row.append(' '.join(expl_3[i + j][1:-1]))
            writer.writerow(row)

    expl_f.close()
    eval_acc = round(100 * correct / len(s1), 2)
    eval_ppl = math.exp(cum_test_ppl / cum_test_n_words)

    if dataset == 'snli_dev':
        bleu_score = bleu_prediction(expl_csv, snli_dev_no_unk, False, False)
    else:
        bleu_score = bleu_prediction(expl_csv, snli_test_no_unk, False, False)

    print dataset.upper(
    ) + ' SNLI accuracy: ', eval_acc, 'bleu score: ', bleu_score, 'ppl: ', eval_ppl
    return eval_acc, round(bleu_score, 2), round(eval_ppl, 2)