def run_train(): timestamp = time.strftime("%Y%m%d") + '-' + time.strftime("%H%M%S") path_data_train = '../../MURA_trainval_keras' path_data_valid = '../../MURA_valid1_keras' path_log = '../../trained_models/' + timestamp + '-dualpathnet131-adam-augslight/tb' model_name = 'DUALPATHNET131' model_pretrained = True batch_size = 16 epoch_num = 100 path_model = '../../trained_models/' + timestamp + '-dualpathnet131-adam-augslight/m-' + timestamp + '.pth.tar' device = None opts, _ = getopt.getopt(sys.argv[1:], "d:", ["device="]) for opt, arg in opts: if opt in ("-d", "--device") and torch.cuda.is_available(): device = torch.device("cuda:" + str(arg)) if device is None: print("GPU not found! Using CPU!") device = torch.device("cpu") print('Training NN architecture = ', model_name) train.train(path_data_train=path_data_train, path_data_valid=path_data_valid, path_log=path_log, path_model=path_model, model_name=model_name, model_pretrained=model_pretrained, batch_size=batch_size, epoch_num=epoch_num, checkpoint=None, device=device, transform_train=data_augmentation.augment_transform_slight( target_mean=np.array([124 / 255, 117 / 255, 104 / 255]), target_std=np.array([1 / (.0167 * 255)] * 3)), transform_valid=data_augmentation.valid_transform( target_mean=np.array([124 / 255, 117 / 255, 104 / 255]), target_std=np.array([1 / (.0167 * 255)] * 3)), optimizer_fn=optimizers.adam_optimizers) print('Testing the trained model') train.test(path_data=path_data_valid, path_model=path_model, model_name=model_name, model_pretrained=model_pretrained, batch_size=batch_size, device=device, transform=data_augmentation.valid_transform( target_mean=np.array([124 / 255, 117 / 255, 104 / 255]), target_std=np.array([1 / (.0167 * 255)] * 3)))
def run_train(): timestamp = time.strftime("%Y%m%d") + '-' + time.strftime("%H%M%S") path_data_train = '../../MURA_trainval_keras' path_data_valid = '../../MURA_valid1_keras' path_log = '../../trained_models/' + timestamp + '-seresnext50_32x4d-adam-augslight-revised/tb' model_name = 'SERESNEXT50_32x4d' model_pretrained = True batch_size = 16 epoch_num = 100 path_model = '../../trained_models/' + timestamp + '-seresnext50_32x4d-adam-augslight-revised/m-' + timestamp + '.pth.tar' device = None opts, _ = getopt.getopt(sys.argv[1:], "d:", ["device="]) for opt, arg in opts: if opt in ("-d", "--device") and torch.cuda.is_available(): device = torch.device("cuda:" + str(arg)) if device is None: print("GPU not found! Using CPU!") device = torch.device("cpu") print('Training NN architecture = ', model_name) train.train( path_data_train=path_data_train, path_data_valid=path_data_valid, path_log=path_log, path_model=path_model, model_name=model_name, model_pretrained=model_pretrained, batch_size=batch_size, epoch_num=epoch_num, checkpoint=None, device=device, transform_train=data_augmentation.augment_transform_slight_revised( target_mean=np.array([0.485, 0.456, 0.406]), target_std=np.array([0.229, 0.224, 0.225])), transform_valid=data_augmentation.valid_transform( target_mean=np.array([0.485, 0.456, 0.406]), target_std=np.array([0.229, 0.224, 0.225])), optimizer_fn=optimizers.adam_optimizers) print('Testing the trained model') train.test(path_data=path_data_valid, path_model=path_model, model_name=model_name, model_pretrained=model_pretrained, batch_size=batch_size, device=device, transform=data_augmentation.valid_transform())