print('Compute node: {}'.format(compute_node)) else: os.environ["CUDA_VISIBLE_DEVICES"]= "-1" # Turn on soft memory allocation tf_config = tf.compat.v1.ConfigProto() tf_config.gpu_options.allow_growth = True tf_config.log_device_placement = False sess = tf.compat.v1.Session(config=tf_config) #K.v1.set_session(sess) # In[4]: data_loader = data_selector(cgf['DATASET']['name'], cgf['DATASET']['arguments']) data, labels, diff = data_loader.load_data() # In[5]: data = data[:3000,:,:] labels = labels[:3000] ''' data = np.load(cgf["DATASET"]["arguments"]["images"]) labels = np.load(cgf["DATASET"]["arguments"]["labels"]) '''
import yaml import sys from data_bank import data_selector if __name__ == '__main__': configfile = 'config_files/create_images_shades.yml' with open(configfile) as ymlfile: cgf = yaml.load(ymlfile, Loader=yaml.SafeLoader) data_loader = data_selector(cgf['DATA']['name'], cgf['DATA']['arguments']) images, labels, diff = data_loader.load_data() print('Data done.')
configfile = 'config_files/config_visualise.yml' with open(configfile) as ymlfile: cgf = yaml.load(ymlfile, Loader=yaml.SafeLoader) configfile1 = 'config_files/config.yml' with open(configfile1) as ymlfile: cgf1 = yaml.load(ymlfile, Loader=yaml.SafeLoader) model_id = cgf['data_arguments']['model'] model_dest = cgf['data_arguments']['model_dest'] model_path = join(model_dest, str(model_id)) data_name = cgf['data_name'] data_arguments = cgf['data_arguments'] data_loader = data_selector(data_name, data_arguments) print(data_loader) data_images, data_labels, data_diff = data_loader.load_data() model_name = cgf1['MODEL']['name'] model_arguments = cgf1['MODEL']['arguments'] input_shape = data_images.shape[1:] output_shape = data_labels.shape[1] # Set the default precision model_precision = cgf1['MODEL_METADATA']['precision'] K.set_floatx(model_precision) model = mb.model_selector(model_name, input_shape, output_shape, model_arguments)
import numpy as np import yaml from data_bank import data_selector import os from os.path import join import sys from shade2_algo import shades2_alg if __name__ == "__main__": configfile = 'config_files/config_exist.yml' with open(configfile) as ymlfile: cgf = yaml.load(ymlfile, Loader=yaml.SafeLoader) data_loader_test = data_selector(cgf['DATASET_TEST']['name'], cgf['DATASET_TEST']['arguments']) test_data, test_labels, _ = data_loader_test.load_data() score = 0 for i in range(len(test_labels)): if shades2_alg(test_data[i])==test_labels[i]: score += 1 print('Accuracy on test set: {}%'.format(100*score/len(test_labels)))
os.environ['CUDA_VISIBLE_DEVICES']= "-1" with open('config_files/config_evaluate.yml') as ymlfile: cgf_eval = yaml.load(ymlfile, Loader= yaml.SafeLoader) model_id = cgf_eval['MODEL']['model_id'] model_dest = cgf_eval['MODEL']['model_dest'] model_path = join(model_dest, str(model_id)) with open(join(model_path, 'config.yml')) as ymlfile: cgf = yaml.load(ymlfile, Loader= yaml.SafeLoader) # Select dataset use_default_test = cgf_eval['DATASET']['use_default'] if use_default_test: data_loader = data_selector(cgf['DATASET_TEST']['name'], cgf['DATASET_TEST']['arguments']) else: data_loader = data_selector(cgf_eval['DATASET']['name'], cgf_eval['DATASET']['arguments']) print('\nDATASET TEST') print(data_loader) test_data, test_labels, test_diff = data_loader.load_data() print(test_data.shape) model_name = cgf['MODEL']['name'] model_arguments = cgf['MODEL']['arguments'] input_shape = test_data.shape[1:] output_shape = test_labels.shape[1];
if use_gpu: compute_node = cgf['COMPUTER_SETUP']['compute_node'] os.environ["CUDA_VISIBLE_DEVICES"] = "%d" % (compute_node) print('Compute node: {}'.format(compute_node)) else: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Turn on soft memory allocation tf_config = tf.compat.v1.ConfigProto() tf_config.gpu_options.allow_growth = True tf_config.log_device_placement = False sess = tf.compat.v1.Session(config=tf_config) #K.v1.set_session(sess) # Load train and validatation data data_loader_train = data_selector(cgf['DATASET_TRAIN']['name'], cgf['DATASET_TRAIN']['arguments']) data_loader_validate = data_selector(cgf['DATASET_VAL']['name'], cgf['DATASET_VAL']['arguments']) print('\nDATASET TRAIN') print(data_loader_train) print('DATASET VALIDATION') print(data_loader_validate) train_data, train_labels, _ = data_loader_train.load_data() val_data, val_labels, _ = data_loader_validate.load_data() # Trying for resnet since memory seems to be the issue train_data = train_data[:3000, :, :] train_labels = train_labels[:3000] if (cgf['MODEL']['name'] == "resnet"):