'/home/nicoli/github/alexnet/dataset/csv/imdb_csv/imdb_age_regression.csv', index_col=0) # In[3]: cols = list(df.columns[1:]) in_format = list(df.columns) # In[9]: train_dataset = BatchGenerator(box_output_format=cols) validation_dataset = BatchGenerator(box_output_format=cols) train_dataset.parse_csv( labels_filename= '/home/nicoli/github/alexnet/dataset/csv/imdb_csv/imdb_age_regression_train_split_47950-70-10-20.csv', images_dir='/home/nicoli/github/alexnet/dataset/imdb-hand-crop/', input_format=in_format) validation_dataset.parse_csv( labels_filename= '/home/nicoli/github/alexnet/dataset/csv/imdb_csv/imdb_age_regression_val_split_47950-70-10-20.csv', images_dir='/home/nicoli/github/alexnet/dataset/imdb-hand-crop/', input_format=in_format) # In[10]: img_height, img_width, img_depth = (224, 224, 3) epochs = 100
in_format = list(df.columns) cols, in_format # In[6]: train_dataset = BatchGenerator(box_output_format=cols) validation_dataset = BatchGenerator(box_output_format=cols) train_dataset. parse_csv(labels_filename='dataset/csv/imdb_csv/imdb_age_regression_train_split_47950-70-10-20.csv', images_dir='dataset/imdb-hand-crop', input_format=in_format) validation_dataset.parse_csv(labels_filename='dataset/csv/imdb_csv/imdb_age_regression_val_split_47950-70-10-20.csv', images_dir='dataset/imdb-hand-crop', input_format=in_format) # In[7]: img_height, img_width, img_depth = (224,224,3) epochs = 1000 train_batch_size = 64 shuffle = True ssd_train = False validation_batch_size = 32
# In[2]: activations = ['relu', 'lrelu'] img_treats = ['image-treat-1', 'image-treat-2', 'image-treat-3'] nets = ['lenet', 'alexnet'] for img_treat in img_treats: for net in nets: for activation in activations: # In[3]: test_dataset = BatchGenerator(box_output_format=['class_id']) test_dataset.parse_csv( labels_filename= '/home/nicoli/github/alexnet/dataset/csv/imdb_csv/imdb_age_regression_test_split_47950-70-10-20.csv', images_dir= '/home/nicoli/github/alexnet/dataset/imdb-hand-crop/', input_format=['image_name', 'class_id']) # In[4]: print("Number of images in the dataset:", test_dataset.get_n_samples()) # In[5]: img_height, img_width, img_depth = (224, 224, 3) #epochs = 90 batch_size = 100