예제 #1
0
    def run_benchmark(self, gpus=0):
        input_dim_1 = 40
        input_dim_2 = 60

        input_shape = (self.num_samples, input_dim_1, 60)
        x, y = generate_text_input_data(input_shape)

        # build the model: a single LSTM
        model = Sequential()
        model.add(LSTM(128, input_shape=(input_dim_1, input_dim_2)))
        model.add(Dense(input_dim_2), activation='softmax')

        optimizer = RMSprop(lr=0.01)

        if keras.backend.backend() is "tensorflow" and gpus > 1:
            model = multi_gpu_model(model, gpus=gpus)

        model.compile(loss='categorical_crossentropy', optimizer=optimizer)

        # create a distributed trainer for cntk
        if keras.backend.backend() is "cntk" and gpus > 1:
            start, end = cntk_gpu_mode_config(model, x.shape[0])
            x = x[start: end]
            y = y[start: end]

        time_callback = timehistory.TimeHistory()

        model.fit(x, y,
                  batch_size=self.batch_size,
                  epochs=self.epochs,
                  callbacks=[time_callback])

        self.total_time = 0
        for i in range(1, self.epochs):
            self.total_time += time_callback.times[i]
예제 #2
0
    def run_benchmark(self, gpus=0):
        input_dim_1 = 40
        input_dim_2 = 60

        input_shape = (self.num_samples, input_dim_1, 60)
        x, y = generate_text_input_data(input_shape)

        # build the model: a single LSTM
        model = Sequential()
        model.add(LSTM(128, input_shape=(input_dim_1, input_dim_2)))
        model.add(Dense(input_dim_2), activation='softmax')

        optimizer = RMSprop(lr=0.01)

        if keras.backend.backend() is "tensorflow" and gpus > 1:
            model = multi_gpu_model(model, gpus=gpus)

        model.compile(loss='categorical_crossentropy', optimizer=optimizer)

        # create a distributed trainer for cntk
        if keras.backend.backend() is "cntk" and gpus > 1:
            start, end = cntk_gpu_mode_config(model, x.shape[0])
            x = x[start: end]
            y = y[start: end]

        time_callback = timehistory.TimeHistory()

        model.fit(x, y,
                  batch_size=self.batch_size,
                  epochs=self.epochs,
                  callbacks=[time_callback])

        self.total_time = 0
        for i in range(1, self.epochs):
            self.total_time += time_callback.times[i]
    def run_benchmark(self,
                      gpus=0,
                      inference=False,
                      use_dataset_tensors=False):
        print("Running model ", self.test_name)
        keras.backend.set_learning_phase(True)

        input_dim_1 = 40
        input_dim_2 = 60

        input_shape = (self.num_samples, input_dim_1, 60)
        x_train, y_train = generate_text_input_data(input_shape)
        x_train = x_train.astype('float32')
        y_train = y_train.astype('float32')

        # build the model: a single LSTM
        model = Sequential()
        model.add(
            LSTM(128, input_shape=(input_dim_1, input_dim_2), unroll=True))

        optimizer = RMSprop(lr=0.01)

        if use_dataset_tensors:
            # Create the dataset and its associated one-shot iterator.
            dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
            dataset = dataset.repeat()
            dataset = dataset.shuffle(10000)
            dataset = dataset.batch(self.batch_size)
            iterator = dataset.make_one_shot_iterator()

            # Model creation using tensors from the get_next() graph node.
            inputs, targets = iterator.get_next()

        if use_dataset_tensors:
            input_tensor = keras.layers.Input(tensor=inputs)
            model.add(Dense(input_dim_2))
            predictions = model(input_tensor)
            model = keras.models.Model(input_tensor, predictions)
        else:
            model.add(Dense(input_dim_2, activation='softmax'))

        # use multi gpu model for more than 1 gpu
        if (keras.backend.backend() == 'tensorflow'
                or keras.backend.backend() == 'mxnet') and gpus > 1:
            model = multi_gpu_model(model, gpus=gpus)

        if use_dataset_tensors:
            model.compile(loss=crossentropy_from_logits,
                          optimizer=optimizer,
                          metrics=['accuracy'],
                          target_tensors=[targets])
        else:
            model.compile(loss='categorical_crossentropy', optimizer=optimizer)

        time_callback = timehistory.TimeHistory()

        if use_dataset_tensors:
            model.fit(epochs=self.epochs,
                      steps_per_epoch=15,
                      callbacks=[time_callback])
        else:
            model.fit(x_train,
                      y_train,
                      batch_size=self.batch_size,
                      epochs=self.epochs,
                      callbacks=[time_callback])

        self.total_time = 0
        for i in range(1, self.epochs):
            self.total_time += time_callback.times[i]

        if keras.backend.backend() == "tensorflow":
            keras.backend.clear_session()
예제 #4
0
    def run_benchmark(self,
                      gpus=0,
                      inference=False,
                      use_dataset_tensors=False,
                      epochs=20):
        # prepare logging
        # file name: backend_data_format_dataset_model_batch_size_gpus.log
        log_file = keras.backend.backend(
        ) + '_' + keras.backend.image_data_format(
        ) + '_lstm_synthetic_batch_size_' + str(
            self.batch_size) + '_' + str(gpus) + 'gpus.log'  # nopep8
        logging.basicConfig(level=logging.INFO, filename=log_file)

        self.epochs = epochs
        print("Running model ", self.test_name)
        keras.backend.set_learning_phase(True)

        input_dim_1 = 40
        input_dim_2 = 60

        input_shape = (self.num_samples, input_dim_1, 60)
        x_train, y_train = generate_text_input_data(input_shape)
        x_train = x_train.astype('float32')
        y_train = y_train.astype('float32')

        # build the model: a single LSTM
        model = Sequential()
        model.add(
            LSTM(128, input_shape=(input_dim_1, input_dim_2), unroll=True))

        optimizer = RMSprop(lr=0.01)

        if use_dataset_tensors:
            # Create the dataset and its associated one-shot iterator.
            dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
            dataset = dataset.repeat()
            dataset = dataset.shuffle(10000)
            dataset = dataset.batch(self.batch_size)
            iterator = dataset.make_one_shot_iterator()

            # Model creation using tensors from the get_next() graph node.
            inputs, targets = iterator.get_next()

        if use_dataset_tensors:
            input_tensor = keras.layers.Input(tensor=inputs)
            model.add(Dense(input_dim_2))
            predictions = model(input_tensor)
            model = keras.models.Model(input_tensor, predictions)
        else:
            model.add(Dense(input_dim_2, activation='softmax'))

        # use multi gpu model for more than 1 gpu
        if (keras.backend.backend() == 'tensorflow'
                or keras.backend.backend() == 'mxnet') and gpus > 1:
            model = multi_gpu_model(model, gpus=gpus, cpu_merge=False)

        if use_dataset_tensors:
            model.compile(loss=crossentropy_from_logits,
                          optimizer=optimizer,
                          metrics=['accuracy'],
                          target_tensors=[targets])
        else:
            model.compile(loss='categorical_crossentropy', optimizer=optimizer)

        time_callback = TimeHistory()

        if use_dataset_tensors:
            history_callback = model.fit(epochs=self.epochs,
                                         steps_per_epoch=15,
                                         callbacks=[time_callback])
        else:
            history_callback = model.fit(x_train,
                                         y_train,
                                         batch_size=self.batch_size,
                                         epochs=self.epochs,
                                         callbacks=[time_callback])

        log = LoggingMetrics(history_callback, time_callback)
        log.save_metrics_to_log(logging)

        if keras.backend.backend() == "tensorflow":
            keras.backend.clear_session()