예제 #1
0
파일: metrics.py 프로젝트: Timozen/srcc
def main():
    #true = cv2.imread(os.path.join("..", "DSIDS", "HR", "niklas_animal_0010.jpg"))
    true = cv2.cvtColor(
        cv2.imread(os.path.join("..", "DSIDS", "test", "20190702_210258.jpg")),
        cv2.COLOR_BGR2RGB)

    lr = cv2.resize(true, (0, 0),
                    fx=1 / 4,
                    fy=1 / 4,
                    interpolation=cv2.INTER_CUBIC)

    pred_nearest = cv2.resize(lr, (0, 0),
                              fx=4,
                              fy=4,
                              interpolation=cv2.INTER_CUBIC)

    model = load_model(os.path.join("..", "models",
                                    "initialized_gen_model20.h5"),
                       custom_objects={"tf": tf})

    _in = Input(shape=lr.shape)
    _out = model(_in)
    _model = Model(_in, _out)

    sr = Utils.denormalize(
        np.squeeze(_model.predict(
            np.expand_dims(rescale_imgs_to_neg1_1(lr), axis=0)),
                   axis=0))

    print("Nearest Neighbor:")
    print("MSE: ", MSE(true, pred_nearest))
    print("PSNR: ", PSNR(true, pred_nearest))
    print("SSIM: ", SSIM(true, pred_nearest))
    print("MSSIM: ", MSSIM(true, pred_nearest))

    print("Init SRGAN:")
    print("MSE: ", MSE(true, sr))
    print("PSNR: ", PSNR(true, sr))
    print("SSIM: ", SSIM(true, sr))
    print("MSSIM: ", MSSIM(true, sr))

    print("Black:")
    print("MSE: ", MSE(true, np.zeros(true.shape)))
    print("PSNR: ", PSNR(true, np.zeros(true.shape)))
    print("SSIM: ", SSIM(true, np.zeros(true.shape)))
    print("MSSIM: ", MSSIM(true, np.zeros(true.shape)))

    print("HR, HR:")
    print("MSE: ", MSE(true, true))
    print("PSNR: ", PSNR(true, true))
    print("SSIM: ", SSIM(true, true))
    print("MSSIM: ", MSSIM(true, true))

    cv2.imwrite("nearest.jpg", cv2.cvtColor(pred_nearest, cv2.COLOR_RGB2BGR))
    cv2.imwrite("sr.jpg", cv2.cvtColor(sr, cv2.COLOR_RGB2BGR))
예제 #2
0
파일: eval.py 프로젝트: Timozen/srcc
def main():
    # paths to the models
    model_paths = [
        os.path.join("..", "models", "SRDense-Type-3_ep80.h5"),
        os.path.join("..", "models", "srdense-norm.h5"),
        os.path.join("..", "models", "srresnet85.h5"),
        os.path.join("..", "models", "gen_model90.h5"),
        os.path.join("..", "models", "srgan60.h5"),
        os.path.join("..", "models", "srgan-mse-20.h5"), "Nearest"
    ]

    # corresponding names of the models
    model_names = [
        "SRDense", "SRDense-norm", "SRResNet", "SRGAN-from-scratch",
        "SRGAN-percept.-loss", "SRGAN-mse", "NearestNeighbor"
    ]

    # corresponding tile shapes
    tile_shapes = [((168, 168), (42, 42)), ((168, 168), (42, 42)),
                   ((504, 504), (126, 126)), ((336, 336), (84, 84)),
                   ((504, 504), (126, 126)), ((504, 504), (126, 126)),
                   ((336, 336), (84, 84))]

    # used to load the models with custom loss functions
    loss = VGG_LOSS((504, 504, 3))
    custom_objects = [{}, {
        "tf": tf
    }, {
        "tf": tf
    }, {
        "tf": tf
    }, {
        "tf": tf
    }, {
        "tf": tf
    }, {}]

    # creating a list of test images
    # [(lr, hr)]
    DOWN_SCALING_FACTOR = 4
    INTERPOLATION = cv2.INTER_CUBIC

    test_images = []
    root = os.path.join("..", "DSIDS", "test")
    # iterating over all files in the test folder
    for img in os.listdir(root):
        # chekcing if the file is an image
        if not ".jpg" in img:
            continue
        hr = Utils.crop_into_lr_shape(cv2.cvtColor(
            cv2.imread(os.path.join(root, img), cv2.IMREAD_COLOR),
            cv2.COLOR_BGR2RGB),
                                      shape=(3024, 4032))
        lr = cv2.resize(hr, (0, 0),
                        fx=1 / DOWN_SCALING_FACTOR,
                        fy=1 / DOWN_SCALING_FACTOR,
                        interpolation=INTERPOLATION)
        test_images.append((lr, hr))

    if TILES:
        '''
        First calculating performance metrics on single image tiles
        '''

        tile_performance = {}
        for i, mp in tqdm(enumerate(model_paths)):
            keras.backend.clear_session()
            # first step: load the model
            if i < 6:
                model = load_model(mp, custom_objects=custom_objects[i])

            mse = []
            psnr = []
            ssim = []
            mssim = []
            # second step: iterate over the test images
            for test_pair in tqdm(test_images):
                # third step: tile the test image
                lr_tiles = Utils.tile_image(test_pair[0],
                                            shape=tile_shapes[i][1])
                hr_tiles = Utils.tile_image(test_pair[1],
                                            shape=tile_shapes[i][0])

                m = []
                p = []
                s = []
                ms = []

                # fourth step: iterate over the tiles
                for lr, hr in zip(lr_tiles, hr_tiles):
                    # fifth step: calculate the sr tile
                    if i < 2:
                        if i == 1:
                            lr = lr.astype(np.float64)
                            lr = lr / 255
                        tmp = np.squeeze(
                            model.predict(np.expand_dims(lr, axis=0)))
                        if i == 1:
                            tmp = tmp * 255
                        tmp[tmp < 0] = 0
                        tmp[tmp > 255] = 255
                        sr = tmp.astype(np.uint8)
                    elif i < 6:
                        sr = Utils.denormalize(
                            np.squeeze(model.predict(
                                np.expand_dims(rescale_imgs_to_neg1_1(lr),
                                               axis=0)),
                                       axis=0))
                    else:
                        sr = cv2.resize(lr, (0, 0),
                                        fx=4,
                                        fy=4,
                                        interpolation=cv2.INTER_NEAREST)

                    # sixth step: append the calculated metric
                    m.append(metrics.MSE(hr, sr))
                    p.append(metrics.PSNR(hr, sr))
                    s.append(metrics.SSIM(hr, sr))
                    ms.append(metrics.MSSIM(hr, sr))

                # seventh step: append the mean metric for this image
                mse.append(np.mean(m))
                psnr.append(np.mean(p))
                ssim.append(np.mean(s))
                mssim.append(np.mean(ms))

            # eight step: append the mean metric for this model
            tile_performance[model_names[i]] = (np.mean(mse), np.mean(psnr),
                                                np.mean(ssim), np.mean(mssim))

        # final output
        print("Performance on single tiles:")
        f = open("tile_performance.txt", "w")
        for key in tile_performance:
            print(
                key + ":   MSE = " + str(tile_performance[key][0]) +
                ", PSNR = " + str(tile_performance[key][1]) + ", SSIM = " +
                str(tile_performance[key][2]),
                ", MSSIM = " + str(tile_performance[key][3]))
            f.write(key + " " + str(tile_performance[key][0]) + " " +
                    str(tile_performance[key][1]) + " " +
                    str(tile_performance[key][2]) + " " +
                    str(tile_performance[key][3]) + "\n")
        f.close()

    if WHOLE_LR:
        '''
        Second calculating performance metrics on a single upscaled image
        '''

        img_performance = {}
        for i, mp in tqdm(enumerate(model_paths)):
            keras.backend.clear_session()
            # first step: load the model
            if i < 6:
                model = load_model(mp, custom_objects=custom_objects[i])

                # second step: changing the input layer
                _in = Input(shape=test_images[0][0].shape)
                _out = model(_in)
                _model = Model(_in, _out)

            mse = []
            psnr = []
            ssim = []
            mssim = []
            # third step: iterate over the test images
            for test_pair in tqdm(test_images):
                # fourth step: calculate the sr image
                try:
                    if i < 2:
                        if i == 1:
                            lr = test_pair[0].astype(np.float64)
                            lr = lr / 255
                        else:
                            lr = test_pair[0]
                        tmp = np.squeeze(
                            _model.predict(np.expand_dims(lr, axis=0)))
                        if i == 1:
                            tmp = tmp * 255
                        tmp[tmp < 0] = 0
                        tmp[tmp > 255] = 255
                        sr = tmp.astype(np.uint8)
                    elif i < 6:
                        sr = Utils.denormalize(
                            np.squeeze(_model.predict(
                                np.expand_dims(rescale_imgs_to_neg1_1(
                                    test_pair[0]),
                                               axis=0)),
                                       axis=0))
                    else:
                        sr = cv2.resize(test_pair[0], (0, 0),
                                        fx=4,
                                        fy=4,
                                        interpolation=cv2.INTER_NEAREST)

                    # fifth step: append the metric for this image
                    mse.append(metrics.MSE(test_pair[1], sr))
                    psnr.append(metrics.PSNR(test_pair[1], sr))
                    ssim.append(metrics.SSIM(test_pair[1], sr))
                    mssim.append(metrics.MSSIM(test_pair[1], sr))
                except:
                    mse.append("err")
                    psnr.append("err")
                    ssim.append("err")
                    mssim.append("err")

            # sixth step: append the mean metric for this model
            try:
                img_performance[model_names[i]] = (np.mean(mse), np.mean(psnr),
                                                   np.mean(ssim),
                                                   np.mean(mssim))
            except:
                img_performance[model_names[i]] = ("err", "err", "err", "err")

        # final output
        print("Performance on whole lr:")
        f = open("whole_lr_performance.txt", "w")
        for key in img_performance:
            print(
                key + ":   MSE = " + str(img_performance[key][0]) +
                ", PSNR = " + str(img_performance[key][1]) + ", SSIM = " +
                str(img_performance[key][2]),
                ", MSSIM = " + str(img_performance[key][3]))
            f.write(key + " " + str(img_performance[key][0]) + " " +
                    str(img_performance[key][1]) + " " +
                    str(img_performance[key][2]) + " " +
                    str(img_performance[key][3]) + "\n")
        f.close()

    if STITCHED:
        '''
        Second calculating performance metrics on a stitched image
        '''

        stitch_performance = {}
        for i, mp in tqdm(enumerate(model_paths)):
            keras.backend.clear_session()
            # first step: load the model
            if i < 6:
                model = load_model(mp, custom_objects=custom_objects[i])

            mse = []
            psnr = []
            ssim = []
            mssim = []

            o_mse = []
            o_psnr = []
            o_ssim = []
            o_mssim = []
            # second step: iterate over the test images
            for test_pair in tqdm(test_images):
                # third step: tile the test image
                lr_tiles = Utils.tile_image(test_pair[0],
                                            shape=tile_shapes[i][1])
                lr_tiles_overlap = Utils.tile_image(test_pair[0],
                                                    shape=tile_shapes[i][1],
                                                    overlap=True)

                sr_tiles = []
                sr_tiles_overlap = []
                # fourth step: iterate over the tiles
                for lr in lr_tiles:
                    # fifth step: calculate the sr tiles
                    if i < 2:
                        if i == 1:
                            lr = lr.astype(np.float64)
                            lr = lr / 255
                        tmp = np.squeeze(
                            model.predict(np.expand_dims(lr, axis=0)))
                        if i == 1:
                            tmp = tmp * 255
                        tmp[tmp < 0] = 0
                        tmp[tmp > 255] = 255
                        sr = tmp.astype(np.uint8)
                        sr_tiles.append(sr)
                    elif i < 6:
                        sr_tiles.append(
                            Utils.denormalize(
                                np.squeeze(model.predict(
                                    np.expand_dims(rescale_imgs_to_neg1_1(lr),
                                                   axis=0)),
                                           axis=0)))
                    else:
                        sr_tiles.append(
                            cv2.resize(lr, (0, 0),
                                       fx=4,
                                       fy=4,
                                       interpolation=cv2.INTER_NEAREST))

                for lr in lr_tiles_overlap:
                    # fifth step: calculate the sr tiles
                    if i < 2:
                        if i == 1:
                            lr = lr.astype(np.float64)
                            lr = lr / 255
                        tmp = np.squeeze(
                            model.predict(np.expand_dims(lr, axis=0)))
                        if i == 1:
                            tmp = tmp * 255
                        tmp[tmp < 0] = 0
                        tmp[tmp > 255] = 255
                        sr = tmp.astype(np.uint8)
                        sr_tiles_overlap.append(sr)
                    elif i < 6:
                        sr_tiles_overlap.append(
                            Utils.denormalize(
                                np.squeeze(model.predict(
                                    np.expand_dims(rescale_imgs_to_neg1_1(lr),
                                                   axis=0)),
                                           axis=0)))
                    else:
                        sr_tiles_overlap.append(
                            cv2.resize(lr, (0, 0),
                                       fx=4,
                                       fy=4,
                                       interpolation=cv2.INTER_NEAREST))

                # sixth step: stitch the image
                sr_simple = ImageStitching.stitch_images(
                    sr_tiles, test_pair[1].shape[1], test_pair[1].shape[0],
                    sr_tiles[0].shape[1], sr_tiles[0].shape[0],
                    test_pair[1].shape[1] // sr_tiles[0].shape[1],
                    test_pair[1].shape[0] // sr_tiles[0].shape[0])
                sr_advanced = ImageStitching.stitching(
                    sr_tiles_overlap,
                    LR=None,
                    image_size=(test_pair[1].shape[0], test_pair[1].shape[1]),
                    adjustRGB=False,
                    overlap=True)

                # seventh step: append the mean metric for this image
                mse.append(metrics.MSE(test_pair[1], sr_simple))
                psnr.append(metrics.PSNR(test_pair[1], sr_simple))
                ssim.append(metrics.SSIM(test_pair[1], sr_simple))
                mssim.append(metrics.MSSIM(test_pair[1], sr_simple))

                o_mse.append(metrics.MSE(test_pair[1], sr_advanced))
                o_psnr.append(metrics.PSNR(test_pair[1], sr_advanced))
                o_ssim.append(metrics.SSIM(test_pair[1], sr_advanced))
                o_mssim.append(metrics.MSSIM(test_pair[1], sr_advanced))

            # ninth step: append the mean metric for this model
            stitch_performance[model_names[i]] = [
                (np.mean(mse), np.mean(psnr), np.mean(ssim), np.mean(mssim)),
                (np.mean(o_mse), np.mean(o_psnr), np.mean(o_ssim),
                 np.mean(o_mssim))
            ]

        # final output
        print("Performance on stitched images:")
        f = open("stitch_performance.txt", "w")
        for key in stitch_performance:
            print(
                "simple stitch:  " + key + ":   MSE = " +
                str(stitch_performance[key][0][0]) + ", PSNR = " +
                str(stitch_performance[key][0][1]) + ", SSIM = " +
                str(stitch_performance[key][0][2]),
                ", MSSIM = " + str(stitch_performance[key][0][3]))
            print(
                "advanced stitch:  " + key + ":   MSE = " +
                str(stitch_performance[key][1][0]) + ", PSNR = " +
                str(stitch_performance[key][1][1]) + ", SSIM = " +
                str(stitch_performance[key][1][2]),
                ", MSSIM = " + str(stitch_performance[key][1][3]))
            f.write(key + " " + str(stitch_performance[key][0][0]) + " " +
                    str(stitch_performance[key][0][1]) + " " +
                    str(stitch_performance[key][0][2]) + " " +
                    str(stitch_performance[key][0][3]) + "\n")
            f.write(key + " " + str(stitch_performance[key][1][0]) + " " +
                    str(stitch_performance[key][1][1]) + " " +
                    str(stitch_performance[key][1][2]) + " " +
                    str(stitch_performance[key][1][3]) + "\n")
        f.close()
예제 #3
0
import Utils_images

import matplotlib.pyplot as plt

image_shape = (336, 336, 3)
#input_dirs = [os.path.join('..', '..', 'DSIDS', 'HR', 'tiles_'+str(image_shape[0])),
#                 os.path.join('..', '..', 'DSIDS', 'LR', 'tiles_'+str(image_shape[0]) ,'4x_cubic')]

#test_images = []
#for img in sorted(os.listdir(os.path.join(input_dirs[1], 'ignore'))):
#    if 'niklas_city_0009' in img:
#        test_images.append(rescale_imgs_to_neg1_1(cv2.imread(os.path.join(input_dirs[1], 'ignore', img))))

test = rescale_imgs_to_neg1_1(
    cv2.cvtColor(
        cv2.imread(
            os.path.join('..', '..', 'DSIDS', 'LR', '4x_cubic',
                         'niklas_city_0009.jpg'), cv2.IMREAD_COLOR),
        cv2.COLOR_BGR2RGB))
#test = rescale_imgs_to_neg1_1(cv2.imread("1008.jpg",cv2.IMREAD_COLOR))

tile_list = Utils_images.crop_lr_image(test, hr_shape=(336, 336), overlap=True)

model = load_model(os.path.join("model", "gen_model90.h5"),
                   custom_objects={"tf": tf})
model.summary()
model.layers.pop(0)

_in = Input(shape=(756, 1008, 3))
#_in = Input(shape=(189, 252, 3))
_out = model(_in)
예제 #4
0
파일: qual_eval.py 프로젝트: Timozen/srcc
def main():
    # paths to the models
    model_paths = [os.path.join("..", "models", "SRDense-Type-3_ep80.h5"), 
                   os.path.join("..", "models", "srdense-norm.h5"),
                   os.path.join("..", "models", "srresnet85.h5"),
                   os.path.join("..", "models", "gen_model90.h5"),
                   os.path.join("..", "models", "srgan60.h5"),
                   os.path.join("..", "models", "srgan-mse-20.h5"),
                   "Nearest"]

    # corresponding names of the models
    model_names = ["SRDense",
                   "SRDense-norm",
                   "SRResNet",
                   "SRGAN-from-scratch",
                   "SRGAN-percept-loss",
                   "SRGAN-mse",
                   "NearestNeighbor"]

    custom_objects = [{},
                      {"tf": tf},
                      {"tf": tf},
                      {"tf": tf},
                      {"tf": tf},
                      {"tf": tf},
                      {}]
    
    if not os.path.isdir(SAVE_PATH):
        os.makedirs(SAVE_PATH)

    test_image = cv2.cvtColor(cv2.imread(os.path.join(os.getcwd(), "test_image.jpg")), cv2.COLOR_BGR2RGB)

    lr_size = ggt(test_image.shape[0], test_image.shape[1])

    if lr_size == test_image.shape[0]:
        lr_size = int(lr_size/10)

    hr_size = lr_size*4
    lr_tiles = Utils.tile_image(test_image, shape=(lr_size, lr_size))
    lr_tiles_overlap = Utils.tile_image(test_image, shape=(lr_size, lr_size), overlap=True)

    if WHOLE_LR:
        '''
        First upscaling whole lr image
        '''

        for i,mp in tqdm(enumerate(model_paths)):
            keras.backend.clear_session()
            # first step: load the model
            if i < 6:
                model = load_model(mp, custom_objects=custom_objects[i])

                # second step: changing the input layer
                _in = Input(shape=test_image.shape)
                _out = model(_in)
                _model = Model(_in, _out)

            # third step propagating the image
            if i < 2:
                if i == 1:
                    lr = test_image.astype(np.float64)
                    lr = lr/255
                else:
                    lr = test_image
                tmp = np.squeeze(_model.predict(np.expand_dims(lr, axis=0)))
                if i == 1:
                    tmp = tmp*255
                tmp[tmp < 0] = 0
                tmp[tmp > 255] = 255
                sr = tmp.astype(np.uint8)
            elif i < 6:
                sr = Utils.denormalize(np.squeeze(_model.predict(np.expand_dims(rescale_imgs_to_neg1_1(test_image), axis=0)), axis=0))
            else:
                sr = cv2.resize(test_image, (0, 0),
                                fx=4,
                                fy=4,
                                interpolation=cv2.INTER_NEAREST)

            # fourth step saving the image
            cv2.imwrite(os.path.join(SAVE_PATH, model_names[i]+"_whole-lr.jpg"), cv2.cvtColor(sr, cv2.COLOR_RGB2BGR))


    if STITCHED:
        '''
        second upscaling tiles and stitching them together
        '''

        for i,mp in tqdm(enumerate(model_paths)):
            keras.backend.clear_session()
            # first step: load the model
            if i < 6:
                model = load_model(mp, custom_objects=custom_objects[i])

                # second step: changing the input layer
                _in = Input(shape=(lr_size, lr_size, 3))
                _out = model(_in)
                _model = Model(_in, _out)

            sr_tiles = []
            # third step propagating the tiles
            for tile in lr_tiles:
                if i < 2:
                    if i == 1:
                        lr = tile.astype(np.float64)
                        lr = lr/255
                    else:
                        lr = tile
                    tmp = np.squeeze(_model.predict(np.expand_dims(lr, axis=0)))
                    if i == 1:
                        tmp = tmp*255
                    tmp[tmp < 0] = 0
                    tmp[tmp > 255] = 255
                    sr_tiles.append( tmp.astype(np.uint8) )
                elif i < 6:
                    sr_tiles.append(Utils.denormalize(np.squeeze(_model.predict(np.expand_dims(rescale_imgs_to_neg1_1(tile), axis=0)), axis=0)))
                else:
                    sr_tiles.append(cv2.resize(tile, (0, 0),
                                    fx=4,
                                    fy=4,
                                    interpolation=cv2.INTER_NEAREST))
            # fourth step stitch the tiles
            sr_simple = ImageStitching.stitch_images(sr_tiles, hr_size*(test_image.shape[1]//lr_size), hr_size*(test_image.shape[0]//lr_size), 
                                                     sr_tiles[0].shape[1], sr_tiles[0].shape[0], test_image.shape[1]//sr_tiles[0].shape[1], 
                                                     test_image.shape[0]//sr_tiles[0].shape[0] )

            # fourth step saving the image
            cv2.imwrite(os.path.join(SAVE_PATH, model_names[i]+"_simple-stitched.jpg"), cv2.cvtColor(sr_simple, cv2.COLOR_RGB2BGR))

            # the same again for overlapping stitching
            sr_tiles_overlap = []
            # propagating the tiles
            for tile in lr_tiles_overlap:
                if i < 2:
                    if i == 1:
                        lr = tile.astype(np.float64)
                        lr = lr/255
                    else:
                        lr = tile
                    tmp = np.squeeze(_model.predict(np.expand_dims(lr, axis=0)))
                    if i == 1:
                        tmp = tmp*255
                    tmp[tmp < 0] = 0
                    tmp[tmp > 255] = 255
                    sr_tiles_overlap.append( tmp.astype(np.uint8) )
                elif i < 6:
                    sr_tiles_overlap.append(Utils.denormalize(np.squeeze(_model.predict(np.expand_dims(rescale_imgs_to_neg1_1(tile), axis=0)), axis=0)))
                else:
                    sr_tiles_overlap.append(cv2.resize(tile, (0, 0),
                                    fx=4,
                                    fy=4,
                                    interpolation=cv2.INTER_NEAREST))

            # stitch the tiles
            sr_overlap = ImageStitching.stitching(sr_tiles_overlap, LR=None, 
                                                  image_size=(hr_size*(test_image.shape[0]//lr_size), hr_size*(test_image.shape[1]//lr_size)),
                                                  adjustRGB=False, overlap=True)
            # save the image
            cv2.imwrite(os.path.join(SAVE_PATH, model_names[i]+"_overlap-stitched.jpg"), cv2.cvtColor(sr_overlap, cv2.COLOR_RGB2BGR))              
예제 #5
0
def train(img_shape,
          epochs,
          batch_size,
          rescaling_factor,
          input_dirs,
          output_dir,
          model_save_dir,
          train_test_ratio,
          gpu=1):

    lr_shape = (img_shape[0] // rescaling_factor,
                img_shape[1] // rescaling_factor, img_shape[2])

    img_train_gen, img_test_gen = create_data_generator(
        input_dirs[1],
        input_dirs[0],
        target_size_lr=(lr_shape[0], lr_shape[1]),
        target_size_hr=(img_shape[0], img_shape[1]),
        preproc_lr=rescale_imgs_to_neg1_1,
        preproc_hr=rescale_imgs_to_neg1_1,
        validation_split=train_test_ratio,
        batch_size=batch_size)

    batch_count = int(
        (len(os.listdir(os.path.join(input_dirs[1], 'ignore'))) / batch_size) *
        (1 - train_test_ratio))

    test_image = []
    for img in sorted(os.listdir(os.path.join(input_dirs[1], 'ignore'))):
        if 'niklas_city_0009' in img:
            test_image.append(
                rescale_imgs_to_neg1_1(
                    cv2.imread(os.path.join(input_dirs[1], 'ignore', img))))

    print("test length: ", len(test_image))

    loss = VGG_LOSS(image_shape)

    generator = Generator(lr_shape, rescaling_factor).generator()

    print('memory usage generator: ',
          get_model_memory_usage(batch_size, generator))

    optimizer = Utils_model.get_optimizer()

    if gpu > 1:
        try:
            print("multi_gpu_model generator")
            par_generator = multi_gpu_model(generator, gpus=2)
        except:
            par_generator = generator
            print("single_gpu_model generator")
    else:
        par_generator = generator
        print("single_gpu_model generator")

    par_generator.compile(loss=loss.loss, optimizer=optimizer)

    par_generator.summary()

    for e in range(1, epochs + 1):
        print('-' * 15, 'Epoch %d' % e, '-' * 15)
        for i in tqdm(range(batch_count)):

            batch = next(img_train_gen)
            image_batch_hr = batch[1]
            image_batch_lr = batch[0]

            if image_batch_hr.shape[0] == batch_size and image_batch_lr.shape[
                    0] == batch_size:
                g_loss = par_generator.train_on_batch(image_batch_lr,
                                                      image_batch_hr)
            else:
                print("weird multi_gpu_model batch error dis: ")
                print("hr batch shape: ", image_batch_hr.shape)
                print("lr batch shape: ", image_batch_lr.shape)

        #if e == 1 or e % 5 == 0:
        #Utils.generate_test_image(output_dir, e, generator, test_image)
        if e % 5 == 0:
            generator.save(os.path.join(model_save_dir, 'srresnet%d.h5' % e))

    generator.save(os.path.join(model_save_dir, 'srresnet.h5' % e))
예제 #6
0
파일: train.py 프로젝트: Timozen/srcc
def train(img_shape, epochs, batch_size, rescaling_factor, input_dirs,
          output_dir, model_save_dir, train_test_ratio):

    lr_shape = (img_shape[0] // rescaling_factor,
                img_shape[1] // rescaling_factor, img_shape[2])

    img_train_gen, img_test_gen = create_data_generator(
        input_dirs[1],
        input_dirs[0],
        target_size_lr=(lr_shape[0], lr_shape[1]),
        target_size_hr=(img_shape[0], img_shape[1]),
        preproc_lr=rescale_imgs_to_neg1_1,
        preproc_hr=rescale_imgs_to_neg1_1,
        validation_split=train_test_ratio,
        batch_size=batch_size)
    loss = VGG_LOSS(image_shape)

    batch_count = int(
        (len(os.listdir(os.path.join(input_dirs[1], 'ignore'))) / batch_size) *
        (1 - train_test_ratio))

    test_image = []
    for img in sorted(os.listdir(os.path.join(input_dirs[1], 'ignore'))):
        if 'niklas_city_0009' in img:
            test_image.append(
                rescale_imgs_to_neg1_1(
                    cv2.imread(os.path.join(input_dirs[1], 'ignore', img))))

    print("test length: ", len(test_image))

    generator = Generator(lr_shape, rescaling_factor).generator()
    discriminator = Discriminator(img_shape).discriminator()

    print('memory usage generator: ',
          get_model_memory_usage(batch_size, generator))
    print('memory usage discriminator: ',
          get_model_memory_usage(batch_size, discriminator))

    optimizer = Utils_model.get_optimizer()

    try:
        print("multi_gpu_model generator")
        par_generator = multi_gpu_model(generator, gpus=2)
    except:
        par_generator = generator
        print("single_gpu_model generator")

    try:
        print("multi_gpu_model discriminator")
        par_discriminator = multi_gpu_model(discriminator, gpus=2)
    except:
        par_discriminator = discriminator
        print("single_gpu_model discriminator")

    par_generator.compile(loss=loss.loss, optimizer=optimizer)
    par_discriminator.compile(loss="binary_crossentropy", optimizer=optimizer)

    gan, par_gan = get_gan_network(par_discriminator, lr_shape, par_generator,
                                   optimizer, loss.loss, batch_size)

    par_discriminator.summary()
    par_generator.summary()
    par_gan.summary()

    loss_file = open(model_save_dir + 'losses.txt', 'w+')
    loss_file.close()

    for e in range(1, epochs + 1):
        print('-' * 15, 'Epoch %d' % e, '-' * 15)

        if e == 100:
            optimizer.lr = 1e-5

        for i in tqdm(range(batch_count)):

            batch = next(img_train_gen)
            image_batch_hr = batch[1]
            image_batch_lr = batch[0]
            generated_images_sr = generator.predict(image_batch_lr)

            real_data_Y = np.ones(batch_size) - \
                np.random.random_sample(batch_size)*0.2
            fake_data_Y = np.random.random_sample(batch_size) * 0.2

            par_discriminator.trainable = True

            if image_batch_hr.shape[0] == batch_size and image_batch_lr.shape[
                    0] == batch_size:
                d_loss_real = par_discriminator.train_on_batch(
                    image_batch_hr, real_data_Y)
                d_loss_fake = par_discriminator.train_on_batch(
                    generated_images_sr, fake_data_Y)
                discriminator_loss = 0.5 * np.add(d_loss_fake, d_loss_real)
            else:
                print("weird multi_gpu_model batch error dis: ")
                print("hr batch shape: ", image_batch_hr.shape)
                print("lr batch shape: ", image_batch_lr.shape)
                print("gan y shape: ", gan_Y.shape)

            batch = next(img_train_gen)
            image_batch_hr = batch[1]
            image_batch_lr = batch[0]

            gan_Y = np.ones(batch_size) - \
                np.random.random_sample(batch_size)*0.2
            discriminator.trainable = False

            if image_batch_hr.shape[0] == batch_size and image_batch_lr.shape[
                    0] == batch_size:
                gan_loss = par_gan.train_on_batch(image_batch_lr,
                                                  [image_batch_hr, gan_Y])
            else:
                print("weird multi_gpu_model batch error gan: ")
                print("hr batch shape: ", image_batch_hr.shape)
                print("lr batch shape: ", image_batch_lr.shape)
                print("gan y shape: ", gan_Y.shape)

        print("discriminator_loss : %f" % discriminator_loss)
        print("gan_loss :", gan_loss)
        gan_loss = str(gan_loss)

        loss_file = open(model_save_dir + '_losses.txt', 'a')
        loss_file.write('epoch%d : gan_loss = %s ; discriminator_loss = %f\n' %
                        (e, gan_loss, discriminator_loss))
        loss_file.close()

        if e == 1 or e % 5 == 0:
            Utils.generate_test_image(output_dir, e, generator, test_image)
        if e % 5 == 0:
            generator.save(os.path.join(model_save_dir, 'gen_model%d.h5' % e))
            discriminator.save(
                os.path.join(model_save_dir, 'dis_model%d.h5' % e))