def playing_with_data(): #folder_data = '/home/maja/PhDProject/human_data/data/' folder_data = '/home/maja/PhDProject/data/' folder_data='/home/maja/PhDProject/human_data/data/' folder_data ='/home/maja/PhDProject/data/' folder_specific = '2013_07_31/' #'HT_2013_04_02/' folder_specific = 'others/' folder_specific = '2013_08_10/' file_data = folder_specific + '2013_07_31_0002.abf' #2013_04_02_0013.abf' file_data = folder_specific + '2013_07_03 PR1_0000.abf' file_data = folder_specific + '2013_09_03_0002.abf' #file_data = folder_specific + '2013_09_03_0006.abf' file_data = folder_specific + '2013_09_05_0009_afterNBQX.abf' file_data = folder_specific + '2013_09_05_0019_synch.abf' file_data = folder_specific + '2013_09_05_0017.abf' file_data = folder_specific + '2013_10_08_0002.abf' folder_save = '/home/maja/PhDProject/data/2013_07_31/saved/' folder_save = '/home/maja/PhDProject/human_data/data/others/' file_save = folder_save + 'all_data_gabaB.npz' #file_save = folder_save + 'data.dat' data, scale, fs = dh_temp.read_data(folder_data, file_data) dh_temp.save_data(folder_save, file_save, data, scale, fs) del data, scale, fs display.plot_data(folder_save, file_save, x_scale = 'ms')
def do_POST(self): # Header self.send_response(200) self.end_headers() # Extract data from request content_len = int(self.headers['Content-Length']) data = self.rfile.read(content_len).decode('utf-8') # Extract dictionary with params data = urllib.parse.parse_qs(data) print('[INFO] Data decoded: ', data) # Extract college name, the param with key 'name' new_name = str(data['name'][0]) # Load database names = load_data() # Check if name already exists in database if new_name in names: self.wfile.write( bytes('[ERR] This name already exists in database', "utf-8")) # If not exists, save new name into database else: names.append(new_name) save_data(names) # Sort and save self.wfile.write( bytes('[INFO] Added {} to database'.format(new_name), "utf-8"))
def save_code_features_test_train(self, path_id=""): train_features_path = "features_train%s.csv"%(path_id) test_features_path = "features_test%s.csv"%(path_id) datasets = data_handler.load_reuters_dataset(0, path_id) train_set_x, train_set_y = datasets[0] test_set_x, test_set_y = datasets[2] features, labels = data_handler.load_full_data() for dA in self.dA_layers: train_set_x = dA.get_hidden_values(train_set_x) test_set_x = dA.get_hidden_values(test_set_x) print features.eval() print train_set_x.shape.eval(), test_set_x.shape.eval() data_handler.save_data(train_set_x.eval(), train_set_y.get_value(borrow=True), train_features_path) data_handler.save_data(test_set_x.eval(), test_set_y.get_value(borrow=True), test_features_path)
def save_code_features_gpu(self, datasets, features_path="features.csv", experiment="id" ,feature_size=1000, finetune_lr=0.1, pretrain_lr=0.1, noise_level=0.1, best_validation_loss=0, test_score=0): train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] for dA in self.dA_layers: train_set_x = dA.get_hidden_values(train_set_x) valid_set_x = dA.get_hidden_values(valid_set_x) test_set_x = dA.get_hidden_values(test_set_x) # merge all results into single feature matrix train_set_x = train_set_x.eval() valid_set_x = valid_set_x.eval() test_set_x = test_set_x.eval() x = numpy.concatenate((train_set_x, valid_set_x, test_set_x)) # merge all labels into single array train_set_y = train_set_y.get_value(borrow=True) valid_set_y = valid_set_y.get_value(borrow=True) test_set_y = test_set_y.get_value(borrow=True) y = numpy.concatenate((train_set_y, valid_set_y, test_set_y)) data_handler.save_data(x, y, features_path) # apply svm classification try: clf = LinearSVC() scores = cross_validation.cross_val_score(clf, x, y, cv=10) accuracy = scores.mean() * 100 # save the accuracy #threadLock.acquire() file = open('deep.csv','a') file.write("%s,%d,%f,%f,%f,%f,%f,%f\n" %(experiment, feature_size, noise_level, pretrain_lr, finetune_lr, accuracy, best_validation_loss * 100., test_score * 100.)) file.close() #threadLock.release() except: pass
def do_DELETE(self): self.send_response(200) self.end_headers() # Extract data from request content_len = int(self.headers['Content-Length']) data = self.rfile.read(content_len).decode('utf-8') data = urllib.parse.parse_qs(data) college_name = str(data['name'][0]) # Search for this name into the database # Load database names = load_data() # Check if name already exists in database if college_name in names: names.remove(college_name) self.wfile.write(bytes('[INFO] Deleting name in database', "utf-8")) save_data(names) # Sort and save # If not exists, return an error else: self.wfile.write( bytes( '[ERR] {} was not found in database'.format(college_name), "utf-8"))
def do_PUT(self): self.send_response(200) self.end_headers() # Extract data from request content_len = int(self.headers['Content-Length']) data = self.rfile.read(content_len).decode('utf-8') # Extract dict with parameters data = urllib.parse.parse_qs(data) # Extract params from dict old_name = str(data['name'][0]) new_name = str(data['new_name'][0]) # Search for this name into the database names = load_data() if old_name in names: names.remove(old_name) names.append(new_name) self.wfile.write(bytes('[INFO] Updating name in database', "utf-8")) save_data(names) # Sort and save else: self.wfile.write( bytes('[ERR] {} was not found in database'.format(old_name), "utf-8"))
def save_data(): data = request.get_json() psw = util.hash_password(data["password"]) data_handler.save_data(data["username"], data["email"], psw) return "done"
def save_data(): data = request.get_json() psw = util.hash_password(data['password']) data_handler.save_data(data['username'], data['email'], psw) return 'done'