예제 #1
0
def valid_test_get_batch(wd_fact2id_path, y_path, batch_path):
    print('loading facts and ys.', save_path + wd_fact2id_path,
          save_path + y_path)
    facts = np.load(save_path + wd_fact2id_path)
    y = np.load(save_path + y_path)
    p = Pool()
    X = np.asarray(list(p.map(pad_X200_same, facts)), dtype=np.int64)
    p.close()
    p.join()
    train_batch(X, y, batch_path, batch_size)
예제 #2
0
def train_get_batch(wd_fact2id_path, y_path, batch_path):
    print('loading facts and ys.', save_path + wd_fact2id_path,
          save_path + y_path)
    facts = np.load(save_path + wd_fact2id_path)
    y = np.load(save_path + y_path)
    p = Pool()
    X = np.asarray(list(p.map(pad_X200_same, facts)), dtype=np.int64)
    p.close()
    p.join()
    sample_num = X.shape[0]
    np.random.seed(13)
    new_index = np.random.permutation(sample_num)
    X = X[new_index]
    y = y[new_index]
    train_batch(X, y, batch_path, batch_size)
def valid_get_batch(word_label, batch_path):
    print('loading words and ys.',
          save_path + word_label)
    word_y = np.load(save_path + word_label)
    words = []
    ys = []
    for word, y in word_y:
        # print(word)
        # print(y)
        words.append(word)
        ys.append(y)

    p = Pool()
    X = np.asarray(list(p.map(pad_X400_same, words)), dtype=np.int64)
    p.close()
    p.join()
    train_batch(X, ys, batch_path, batch_size)
예제 #4
0
def valid_test_get_batch(wd_fact2id_path, y_path, batch_path):
    print('loading facts and ys.',
          save_path + wd_fact2id_path,
          save_path + y_path)
    facts = np.load(save_path + wd_fact2id_path)
    print(facts[0:2])
    p = Pool()
    word2id = np.asarray(list(p.map(get_id4words, facts)))

    y = np.load(save_path + y_path)
    print(y[0:10])
    y_id = np.asarray(list(p.map(get_id4accus, y)))
    print(y_id[0:50])

    p = Pool()
    X = np.asarray(list(p.map(pad_X200_same, word2id)), dtype=np.int64)
    print(X[0:2])

    train_batch(X, y_id, batch_path, batch_size)
def train_get_batch(word_label, batch_path):
    print('loading words and ys.', save_path + word_label)
    word_y = np.load(save_path + word_label)
    words = []
    ys = []
    for word, y in word_y:
        words.append(word)
        ys.append(y)
    words = np.asarray(words)
    ys = np.asarray(ys)
    p = Pool()
    X = np.asarray(list(p.map(pad_X400_same, words)), dtype=np.int64)
    p.close()
    p.join()
    sample_num = X.shape[0]
    np.random.seed(13)
    new_index = np.random.permutation(sample_num)
    X = X[new_index]
    y = ys[new_index]
    train_batch(X, y, batch_path, batch_size)