def test_dataloader(args): test_dataset_file = "{0}/test_data_{1}.hdf5".format(args.locations["train_test_datadir"],args.region) validation_loader = torch.utils.data.DataLoader( data_io.ConcatDataset("test",args.nlevs, test_dataset_file, args.locations['normaliser_loc'], xvars=args.xvars, yvars=args.yvars, yvars2=args.yvars2, data_frac=args.data_fraction, add_adv=False), batch_size=args.batch_size, shuffle=False) return validation_loader
def test_dataloader(self): test_dataset_file = "{0}/test_data_{1}.hdf5".format( locations["train_test_datadir"], region) validation_loader = torch.utils.data.DataLoader(data_io.ConcatDataset( "test", nlevs, test_dataset_file, overfit=True), batch_size=batch_size, shuffle=False) return validation_loader
def train_dataloader(args): train_dataset_file = "{0}/train_data_{1}.hdf5".format( args.locations["train_test_datadir"], args.region) concatDataset = data_io.ConcatDataset("train", args.nlevs, train_dataset_file, args.locations['normaliser_loc'], data_frac=args.data_fraction) train_loader = torch.utils.data.DataLoader(concatDataset, batch_size=args.batch_size, shuffle=True) return train_loader, concatDataset