def stream(): stream = data_io.random_select_stream(*[ data_io.stream_file('data/train.%02d.pklgz' % i) for i in xrange(1, 20) ]) stream = data_io.buffered_sort(stream, key=lambda x: x[1].shape[0], buffer_items=128) batched_stream = reader.batch_and_pad(stream, batch_size=16, mean=mean, std=std) batched_stream = data_io.buffered_random(batched_stream, buffer_items=4) return batched_stream
def validate(): stream = data_io.stream_file('data/train.%02d.pklgz' % 0) stream = data_io.buffered_sort(stream, key=lambda x: x[1].shape[0], buffer_items=128) batched_stream = reader.batch_and_pad(stream, batch_size=32, mean=mean, std=std) total_cost = 0 total_frames = 0 for data, lengths in batched_stream: batch_avg_cost = test(data,lengths) batch_frames = np.sum(lengths) total_cost += batch_avg_cost * batch_frames total_frames += batch_frames return total_cost / total_frames
def validate(): stream = data_io.stream_file('data/train.%02d.pklgz' % 0) stream = data_io.buffered_sort(stream, key=lambda x: x[1].shape[0], buffer_items=128) batched_stream = reader.batch_and_pad(stream, batch_size=32, mean=mean, std=std) total_cost = 0 total_frames = 0 for data, lengths in batched_stream: batch_avg_cost = test(data, lengths) batch_frames = np.sum(lengths) total_cost += batch_avg_cost * batch_frames total_frames += batch_frames return total_cost / total_frames