def main(argv): args = parser.parse_args(argv[1:]) # Get Feature Columns feature_columns = data_load.get_feature_column( "data/original_features.csv") # Build 2 hidden layer DNN with 20, 20 units respectively. checkpointing_config = tf.estimator.RunConfig( save_checkpoints_secs=60, # Save checkpoints every 60 seconds. keep_checkpoint_max=10, # Retain the 10 most recent checkpoints. ) classifier = tf.estimator.DNNClassifier( model_dir="model/y_dnn", config=checkpointing_config, feature_columns=feature_columns, # Two hidden layers of 20 nodes each. hidden_units=[20, 20], # The model must choose between 2 classes. n_classes=2) train_x, train_y = get_data_to_be_re_train() # Train the Model. classifier.train( input_fn=lambda: train_input_fn(train_x, train_y, args.batch_size), steps=args.train_steps)
def main(argv): args = parser.parse_args(argv[1:]) # Get Feature Columns feature_columns = data_load.get_feature_column("data/original_features.csv") # Build 2 hidden layer DNN with 20, 20 units respectively. checkpointing_config = tf.estimator.RunConfig( save_checkpoints_secs=60, # Save checkpoints every 60 seconds. keep_checkpoint_max=10, # Retain the 10 most recent checkpoints. ) classifier = tf.estimator.DNNClassifier( model_dir="model/y_dnn", config=checkpointing_config, feature_columns=feature_columns, # Two hidden layers of 20 nodes each. hidden_units=[20, 20], # The model must choose between 2 classes. n_classes=2) data_to_be_predicted, feature_id = get_features_to_be_predicted() predictions = classifier.predict( input_fn=lambda: predict_input_fn(data_to_be_predicted, batch_size=args.batch_size) ) predictions = list(predictions) data_set = [] for i in range(0, len(predictions)): features = data_to_be_predicted.values[i] f_id = feature_id[i] pre = predictions[i].get("class_ids")[0] new_data_item = [f_id] for feature_item in features: new_data_item.append(feature_item) new_data_item.append(pre) data_set.append(new_data_item) print(new_data_item) print(data_set) data_save.write_to_csv( "data/y2.csv", data=data_set, header=None)
def pre_train(): print("[Pre-Train] Ready to do pre_train") # Load training data from data/y1.csv train_x, train_y = data_load.load_data_original_with_label( "../data/y1.csv", columns.CSV_FEATURE_AND_LABEL_RESULT, "y1") print("=====[View Train Data]=====") print(train_x.head()) print("===========================") # Get Feature Columns just from original_features.csv # because original_features.csv only include features and feature_id feature_columns = data_load.get_feature_column( "../data/original_features.csv") # Build 2 hidden layer DNN with 20, 20 units respectively. checkpointing_config = tf.estimator.RunConfig( save_checkpoints_secs=60, # Save checkpoints every 60 seconds. keep_checkpoint_max=10, # Retain the 10 most recent checkpoints. ) classifier = tf.estimator.DNNClassifier( model_dir="../model/y_dnn", config=checkpointing_config, feature_columns=feature_columns, # Two hidden layers of 20 nodes each. hidden_units=[20, 20], # The model must choose between 2 classes. n_classes=2) # Train the Model. classifier.train( input_fn=lambda: train_input_fn(train_x, train_y, batch_size=100), steps=1000) # Print where the model saved. print("[Check Point]" + classifier.latest_checkpoint())