# Training init = tf.global_variables_initializer() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = gpu_frac) sess = tf.Session(config=tf.ConfigProto(log_device_placement = False, gpu_options=gpu_options)) sess.run(init) #%% Training cycle for epoch in range(training_epochs): training_data = [[]]* num_training_files reading_phase = True for file_idx in range(num_training_files): if reading_phase: training_data [file_idx] = data_loader(file_idx, input_dim) for i in range(n_batch): #pre_emph is zero since we do it on X if we want separatrely batch_xs = data_parser(training_data[file_idx], input_dim, batch_size, overlap = overlap) ################################################################ # Update taco _, taco_cost_ = sess.run([opt, taco_cost], feed_dict={X: batch_xs, learning_rate: learning_rate_init, noise_std : noise_std_init}) ##### Display logs per epoch step if i % display_step == 0: print("epoch:", '%02d' % (epoch + 1), "File:", '%02d' % (file_idx), "iteration:", '%04d' % (i + 1), "Taco_cost =", "{:.9f}".format( (10**4) * taco_cost_)) # ### Early stopping!
# Training init = tf.global_variables_initializer() sess=tf.Session() sess.run(init) # Training cycle for epoch in range(training_epochs): # learning_rate_new = learning_rate_new /2. for file_idx in range(10): training_data = data_loader(file_idx) # n_batch = int(n_training / batch_size) for i in range(n_batch): #pre_emph is zero since we do it on X if we want separatrely batch_xs = data_parser(training_data, input_dim, batch_size, preemph=0.0, overlap=True) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs, mode:0.0}) # Display logs per epoch step if i % display_step == 0: print("epoch_", '%02d' % (epoch+1), "File_", '%02d' % (file_idx), "iteration_", '%04d' % (i+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") #%%########################################################################## # Training error calculation training_data = data_loader(9) training_error = 0