def colormap(plot): """ Loads and plots the data for a time averaged map Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting map of ' + plot['variable'] # load data from netcdf file data, lon, lat, depth, units, _, weights = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], gridweights = True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) if plot['units']: units = plot['units'] # get data at correct depth data = _depth_data(data, depth, plot) if plot['sigma'] and plot['data_type'] == 'trends': detrenddata, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype='detrend') detrenddata = _full_depth_data(detrenddata, depth, plot) siggrid = trend_significance(detrenddata, plot['sigma']) cvalues, _ = _trend_units(siggrid, units, plot) else: cvalues = None dft.filltitle(plot) anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False label = stats(plot, data, weights=weights, rmse=False) _pcolor(data, plot, anom=anom) # make plot pr.worldmap(plot['plot_projection'], lon, lat, data, ax_args=plot['data1']['ax_args'], label=label, pcolor_args=plot['data1']['pcolor_args'], cblabel=units, plot=plot, cvalues=cvalues, **plot['plot_args']) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def scatter(plot): print 'plotting scatter map of ' + plot['variable'] + ' and ' + plot[ 'extra_variables'][0] # load data from netcdf file data, lon, lat, depth, units, _, weights = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) # get data at correct depth data = _depth_data(data, depth, plot) data2, _, _, _, units2, _, _ = pl.dataload( plot['extra_ifiles'][plot['extra_variables'][0]], plot['extra_variables'][0], plot['dates'], realm=plot['extra_realm_cats'][plot['extra_variables'][0]], scale=plot['extra_scales'][0], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) data2, units2 = _trend_units(data2, units2, plot) if plot['units']: units = plot['units'] if not plot['data1']['title_flag']: plot['data1']['ax_args'][ 'title'] = plot['data_type'] + ' ' + plot['model_ID'] + ' ' + plot[ 'dates']['start_date'] + ' - ' + plot['dates']['end_date'] if 'xlabel' not in plot['data1']['ax_args']: plot['data1']['ax_args']['xlabel'] = plot['variable'] + ' ' + units if 'ylabel' not in plot['data1']['ax_args']: plot['data1']['ax_args'][ 'ylabel'] = plot['extra_variables'][0] + ' ' + units2 # make plot pr.scatter(data, data2, ax_args=plot['data1']['ax_args'], plot=plot) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def taylor_load(plot, compfile, depth, i, color, refdata, weights): data, _, _, _, _, _, _ = pl.dataload( compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=depth) corr, refstd, std = weighted_correlation(refdata, data, weights) stats_dictionary(plot, compfile, depth, std, std / refstd, corr) return { 'name': plot['comp_model'], 'corrcoef': corr, 'std': std / refstd, 'color': color, 'marker': i, 'zorder': 2 }
def scatter(plot): print 'plotting scatter map of ' + plot['variable'] + ' and ' + plot['extra_variables'][0] # load data from netcdf file data, lon, lat, depth, units, _, weights = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) # get data at correct depth data = _depth_data(data, depth, plot) data2, _, _, _, units2, _, _ = pl.dataload(plot['extra_ifiles'][plot['extra_variables'][0]], plot['extra_variables'][0], plot['dates'], realm=plot['extra_realm_cats'][plot['extra_variables'][0]], scale=plot['extra_scales'][0], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) data2, units2 = _trend_units(data2, units2, plot) if plot['units']: units = plot['units'] if not plot['data1']['title_flag']: plot['data1']['ax_args']['title'] = plot['data_type'] + ' ' + plot['model_ID'] + ' ' + plot['dates']['start_date'] + ' - ' + plot['dates']['end_date'] if 'xlabel' not in plot['data1']['ax_args']: plot['data1']['ax_args']['xlabel'] = plot['variable'] + ' ' + units if 'ylabel' not in plot['data1']['ax_args']: plot['data1']['ax_args']['ylabel'] = plot['extra_variables'][0] + ' ' + units2 # make plot pr.scatter(data, data2, ax_args=plot['data1']['ax_args'], plot=plot) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def section(plot): """ Loads and plots the data for a time average section map. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting section of ' + plot['variable'] data, _, lat, depth, units, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], section=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) if plot['units']: units = plot['units'] dft.filltitle(plot) anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False _pcolor(data, plot, anom=anom) fig = plt.figure(figsize=(10, 3)) gs = gridspec.GridSpec(1, 1, width_ratios=[1, 1]) # plot the data pr.section(lat, depth, data, plot=plot, ax=plt.subplot(gs[0, 0]), ax_args=plot['data1']['ax_args'], pcolor_args=plot['data1']['pcolor_args'], cblabel=units) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def histogram(plot): values = {} data, _, _, depth, units, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], yearmean=plot['yearmean'], cdostring=plot['cdostring'], fieldmean=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) data = _1d_depth_data(data, depth, plot) data, units = _trend_units(data, units, plot) if plot['units']: units = plot['units'] values = [] values.append({'name': plot['model_ID'], 'data': data, 'color': 'r'}) for o in plot['comp_obs']: values.append({'name': o, 'data': _histogram_data(plot, plot['obs_file'][o]), 'color': 'b'}) for i in plot['comp_ids']: values.append({'name': i, 'data': _histogram_data(plot, plot['id_file'][i]), 'color': 'y'}) for m in plot['comp_models']: values.append({'name': m, 'data': _histogram_data(plot, plot['model_file'][m]), 'color': 'g'}) cmipdata = [] for f in plot['cmip5_files']: try: cmipdata.append(_histogram_data(plot, f)) except: continue dft.filltitle(plot) plot['data1']['ax_args']['xlabel'] = 'Trends ' + plot['comp_dates']['start_date'][:4] + '-' + plot['comp_dates']['end_date'][:4] + ' (' + units + ')' plot['data1']['ax_args']['ylabel'] = '# Realizations' pr.histogram(cmipdata, values, ax_args=plot['data1']['ax_args'], plot=plot) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def zonalmeandata(plot, compfile): data, _, _, _, _, _, _ = pl.dataload(compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], section=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) return data
def _histogram_data(plot, compfile): data, _, _, _, _, _, _ = pl.dataload(compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], yearmean=plot['yearmean'], fieldmean=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=plot['plot_depth']) data, _ = _trend_units(data, '', plot) return data
def _timeseries_data(plot, compfile): data, _, _, _, _, time, _ = pl.dataload(compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], fieldmean=True, cdostring=plot['cdostring'], yearmean=plot['yearmean'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) return data, time
def zonalmeandata(plot, compfile): data, _, _, _, _, _, _ = pl.dataload( compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], section=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) return data
def taylor_load(plot, compfile, depth, i, color, refdata, weights): data, _, _, _, _, _, _ = pl.dataload(compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=depth) corr, refstd, std = weighted_correlation(refdata, data, weights) stats_dictionary(plot, compfile, depth, std, std / refstd, corr) return {'name': plot['comp_model'], 'corrcoef': corr, 'std': std / refstd, 'color': color, 'marker': i, 'zorder': 2}
def section(plot): """ Loads and plots the data for a time average section map. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting section of ' + plot['variable'] data, _, lat, depth, units, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], section=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) if plot['units']: units = plot['units'] dft.filltitle(plot) anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False _pcolor(data, plot, anom=anom) fig = plt.figure(figsize=(10,3)) gs = gridspec.GridSpec(1, 1, width_ratios=[1, 1]) # plot the data pr.section(lat, depth, data, plot=plot, ax=plt.subplot(gs[0, 0]), ax_args=plot['data1']['ax_args'], pcolor_args=plot['data1']['pcolor_args'], cblabel=units) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def _timeseries_data(plot, compfile): data, _, _, _, _, time, _ = pl.dataload( compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], fieldmean=True, cdostring=plot['cdostring'], yearmean=plot['yearmean'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) return data, time
def _histogram_data(plot, compfile): data, _, _, _, _, _, _ = pl.dataload( compfile, plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], yearmean=plot['yearmean'], fieldmean=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=plot['plot_depth']) data, _ = _trend_units(data, '', plot) return data
def zonalmean(plot): """ Loads and plots a time average of the zonal means for each latitude. Loads and plots the data for comparison. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting zonal mean of ' + plot['variable'] data, _, lat, depth, units, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], section=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) if 'ylabel' not in plot['data1']['ax_args']: if plot['units']: plot['data1']['ax_args']['ylabel'] = plot['units'] else: plot['data1']['ax_args']['ylabel'] = units plot['units'] = units # get data at the correct depth plot['plot_depth'] = None if data.ndim > 1: plot['plot_depth'] = min(depth, key=lambda x: abs(x - plot['depth'])) try: depth_ind = np.where(np.round(depth) == plot['plot_depth'])[0][0] except: print('Failed to extract depth ' + plot['plot_depth'] + ' for ' + plot['variable']) depth_ind = 0 data = data[depth_ind, :] fig, ax = plt.subplots(1, 1, figsize=(8, 8)) dft.filltitle(plot) # make plot pr.zonalmean(lat, data, plot=plot, ax=ax, ax_args=plot['data1']['ax_args'], color='r', zorder=6) handles = [mpatches.Patch(color='r', label=plot['model_ID'])] # plot comparison data on the same axis if plot['cmip5_file']: plot['comp_model'] = 'cmip5' data = zonalmeandata(plot, plot['cmip5_file']) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='k', zorder=4) handles.append(mpatches.Patch(color='k', label='cmip5')) for o in plot['comp_obs']: plot['comp_model'] = o data = zonalmeandata(plot, plot['obs_file'][o]) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='b', zorder=5) handles.append(mpatches.Patch(color='b', label=str(plot['comp_model']))) for m in plot['comp_models']: plot['comp_model'] = model data = zonalmeandata(plot, plot['model_file'][m]) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='g', zorder=2) handles.append(mpatches.Patch(color='g', label=str(plot['comp_model']))) for i in plot['comp_ids']: plot['comp_model'] = i data = zonalmeandata(plot, plot['id_file'][i]) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='y', zorder=3) handles.append(mpatches.Patch(color='y', label=str(plot['comp_model']))) for f in plot['cmip5_files']: try: plot['comp_model'] = 'cmip' data = zonalmeandata(plot, f) pr.zonalmean(lat, data, plot=plot, ax=ax, color='0.75', zorder=1) except: continue ax.legend(handles=handles, loc='center left', bbox_to_anchor=(1, 0.5)) plot_name = plotname(plot) savefigures(plot_name, **plot) return plot_name
def taylor(plot): labelled_stats = [] unlabelled_stats = [] obs = plot['obs_file'].iterkeys().next() plot['plot_depth'] = plot['depths'][0] plot['stats'] = {} for i, d in enumerate(plot['depths']): refdata, _, _, depth, units, _, weights = pl.dataload( plot['obs_file'][obs], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[d]) refstd = weighted_std(refdata, weights) stats_dictionary(plot, obs, d, refstd, 1, 1) data, _, _, _, _, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=depth) corrcoef, _, std = weighted_correlation(refdata, data, weights) labelled_stats.append({ 'name': plot['model_ID'], 'corrcoef': corrcoef, 'std': std / refstd, 'color': 'red', 'marker': '$%d$' % (i + 1), 'zorder': 3 }) stats_dictionary(plot, plot['ifile'], d, std, std / refstd, corrcoef) if plot['cmip5_file']: plot['comp_model'] = 'cmip5' labelled_stats.append( taylor_load(plot, plot['cmip5_file'], depth, '$%d$' % (i + 1), 'k', refdata, weights)) for m in plot['comp_models']: plot['comp_model'] = model labelled_stats.append( taylor_load(plot, plot['model_file'][m], depth, '$%d$' % (i + 1), 'g', refdata, weights)) for c in plot['comp_ids']: plot['comp_model'] = c labelled_stats.append( taylor_load(plot, plot['id_file'][c], depth, '$%d$' % (i + 1), 'y', refdata, weights)) for f in plot['cmip5_files']: plot['comp_model'] = 'cmip' try: unlabelled_stats.append( taylor_load(plot, f, depth, '$%d$' % (i + 1), '0.75', refdata, weights)) except: continue depthlist = [ str(i + 1) + ': ' + str(d) for i, d in enumerate(plot['depths']) ] label = ' '.join(depthlist) if len(plot['depths']) <= 1: for l in labelled_stats: l['marker'] = '.' for l in unlabelled_stats: l['marker'] = '.' label = None dft.filltitle(plot) pr.taylor_from_stats(labelled_stats, unlabelled_stats, obs_label=obs, label=label, ax_args=plot['data1']['ax_args']) # plot['stats'] = {'obserations': {'standard deviation': float(refstd)}} plot_name = plotname(plot) plt.tight_layout() savefigures(plot_name, **plot) if not plot['units']: plot['units'] = units plot['comp_file'] = plot['obs_file'] return plot_name
def timeseries(plot): print 'plotting timeseries comparison of ' + plot['variable'] data, _, _, depth, units, time, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], fieldmean=True, yearmean=plot['yearmean'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) plot['data1']['ax_args']['xlabel'] = 'Time' if 'ylabel' not in plot['data1']['ax_args']: if plot['units']: plot['data1']['ax_args']['ylabel'] = plot['units'] else: plot['data1']['ax_args']['ylabel'] = units plot['units'] = units plot['plot_depth'] = None if data.ndim > 1: plot['plot_depth'] = min(depth, key=lambda x: abs(x - plot['depth'])) try: depth_ind = np.where(np.round(depth) == plot['plot_depth'])[0][0] except: print('Failed to extract depth ' + plot['plot_depth'] + ' for ' + plot['variable']) depth_ind = 0 data = data[:, depth_ind] fig, ax = plt.subplots(1, 1, figsize=(8, 8)) dft.filltitle(plot) # make plot pr.timeseries(time, data, plot=plot, ax=ax, label=plot['model_ID'], ax_args=plot['data1']['ax_args'], color='r', zorder=6) handles = [mpatches.Patch(color='r', label=plot['model_ID'])] # plot comparison data on the same axis if plot['cmip5_file']: plot['comp_model'] = 'cmip5' data, x = _timeseries_data(plot, plot['cmip5_file']) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='k', zorder=4) handles.append(mpatches.Patch(color='k', label=str(plot['comp_model']))) for o in plot['comp_obs']: plot['comp_model'] = o data, x = _timeseries_data(plot, plot['obs_file'][o]) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='b', zorder=5) handles.append(mpatches.Patch(color='b', label=str(plot['comp_model']))) for model in plot['comp_models']: plot['comp_model'] = model data, x = _timeseries_data(plot, plot['model_file'][model]) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='g', zorder=2) handles.append(mpatches.Patch(color='g', label=str(plot['comp_model']))) for i in plot['comp_ids']: plot['comp_model'] = i data, x = timeseriesdata(plot, plot['id_file'][i], depth) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='y', zorder=3) handles.append(mpatches.Patch(color='y', label=str(plot['comp_model']))) for f in plot['cmip5_files']: try: plot['comp_model'] = 'cmip' data, x = _timeseries_data(plot, f) pr.timeseries(x, data, plot=plot, ax=ax, label=None, ax_args=plot['data1']['ax_args'], color='0.75', zorder=1) except: continue ax.legend(handles=handles, loc='center left', bbox_to_anchor=(1, 0.5)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter(useOffset=False)) plot_name = plotname(plot) savefigures(plot_name, **plot) return plot_name
def multivariable_taylor(plot): if 'depth' not in plot: plot['depth'] = 0 labelled_stats = [] obs = plot['obs_file'].iterkeys().next() plot['stats'] = {} colors = plt.matplotlib.cm.jet( np.linspace(0, 1, len(plot['extra_variables']) + 1)) refdata, _, _, depth, units, _, weights = pl.dataload( plot['obs_file'][obs], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) refstd = weighted_std(refdata, weights) data, _, _, _, _, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) corrcoef, _, std = weighted_correlation(refdata, data, weights) labelled_stats.append({ 'name': plot['variable'], 'corrcoef': corrcoef, 'std': std / refstd, 'color': colors[0], 'marker': '.', 'zorder': 3 }) stats_dictionary(plot, plot['ifile'], plot['depth'], std, std / refstd, corrcoef) for i, var in enumerate(plot['extra_variables']): refdata, _, _, depth, units, _, weights = pl.dataload( plot['extra_obs_files'][var], var, plot['comp_dates'], realm=plot['extra_realm_cats'][var], scale=plot['extra_comp_scales'][i], shift=plot['extra_comp_shifts'][i], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) refstd = weighted_std(refdata, weights) data, _, _, _, _, _, _ = pl.dataload( plot['extra_ifiles'][var], var, plot['dates'], realm=plot['realm_cat'], scale=plot['extra_scales'][i], shift=plot['extra_shifts'][i], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) corrcoef, _, std = weighted_correlation(refdata, data, weights) labelled_stats.append({ 'name': var, 'corrcoef': corrcoef, 'std': std / refstd, 'color': colors[i + 1], 'marker': '.', 'zorder': 3 }) stats_dictionary(plot, plot['extra_ifiles'][var], plot['depth'], std, std / refstd, corrcoef) if not plot['data1']['title_flag']: plot['data1']['ax_args'][ 'title'] = plot['data_type'] + ' ' + plot['model_ID'] + ' ' + plot[ 'dates']['start_date'] + ' - ' + plot['dates']['end_date'] pr.taylor_from_stats(labelled_stats, [], obs_label='observations', label=None, ax_args=plot['data1']['ax_args']) plot_name = plotname(plot) plt.tight_layout() savefigures(plot_name, **plot) if not plot['units']: plot['units'] = '--' plot['comp_file'] = plot['obs_file'] return plot_name
def colormap(plot): """ Loads and plots the data for a time averaged map Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting map of ' + plot['variable'] # load data from netcdf file data, lon, lat, depth, units, _, weights = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], months=plot['months'], datatype=plot['data_type'], cdostring=plot['cdostring'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) if plot['units']: units = plot['units'] # get data at correct depth data = _depth_data(data, depth, plot) if plot['sigma'] and plot['data_type'] == 'trends': detrenddata, _, _, _, _, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], months=plot['months'], datatype='detrend') detrenddata = _full_depth_data(detrenddata, depth, plot) siggrid = trend_significance(detrenddata, plot['sigma']) cvalues, _ = _trend_units(siggrid, units, plot) else: cvalues = None dft.filltitle(plot) anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False label = stats(plot, data, weights=weights, rmse=False) _pcolor(data, plot, anom=anom) # make plot pr.worldmap(plot['plot_projection'], lon, lat, data, ax_args=plot['data1']['ax_args'], label=label, pcolor_args=plot['data1']['pcolor_args'], cblabel=units, cbbounds=plot['data1']['cbbounds'], plot=plot, cvalues=cvalues, **plot['plot_args']) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def histogram(plot): values = {} data, _, _, depth, units, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], yearmean=plot['yearmean'], cdostring=plot['cdostring'], fieldmean=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) data = _1d_depth_data(data, depth, plot) data, units = _trend_units(data, units, plot) if plot['units']: units = plot['units'] values = [] values.append({'name': plot['model_ID'], 'data': data, 'color': 'r'}) for o in plot['comp_obs']: values.append({ 'name': o, 'data': _histogram_data(plot, plot['obs_file'][o]), 'color': 'b' }) for i in plot['comp_ids']: values.append({ 'name': i, 'data': _histogram_data(plot, plot['id_file'][i]), 'color': 'y' }) for m in plot['comp_models']: values.append({ 'name': m, 'data': _histogram_data(plot, plot['model_file'][m]), 'color': 'g' }) cmipdata = [] for f in plot['cmip5_files']: try: cmipdata.append(_histogram_data(plot, f)) except: continue dft.filltitle(plot) plot['data1']['ax_args']['xlabel'] = 'Trends ' + plot['comp_dates'][ 'start_date'][:4] + '-' + plot['comp_dates'][ 'end_date'][:4] + ' (' + units + ')' plot['data1']['ax_args']['ylabel'] = '# Realizations' pr.histogram(cmipdata, values, ax_args=plot['data1']['ax_args'], plot=plot) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def section_comparison(plot): """ Loads and plots the data for a time averaged section map. Loads and plots the data for comparison and plots the difference between the data and the comparison data. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting section comparison of ' + plot['variable'] data2, _, _, depth, _, _, _ = pl.dataload(plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], section=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) data, _, lat, depth, units, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], section=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=list(depth)) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) data2, _ = _trend_units(data2, units, plot) if plot['units']: units = plot['units'] compdata = data - data2 dft.filltitle(plot) anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False _comp_pcolor(data, data2, plot, anom=anom) if plot['alpha'] and plot['data_type'] == 'climatology': fulldata, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], depthneeded=list(depth), section=True) fulldata2, _, _, _, _, _, _ = pl.dataload(plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], depthneeded=list(depth), section=True) pvalues = ttest(fulldata, fulldata2) else: pvalues = None # make plots of data, comparison data, data - comparison data fig = plt.figure(figsize=(6, 8)) gs = gridspec.GridSpec(3, 2, width_ratios=[20, 1]) pr.section(lat, depth, data, plot=plot, ax=plt.subplot(gs[0, 0]), ax_args=plot['data1']['ax_args'], pcolor_args=plot['data1']['pcolor_args'], cblabel=units, cbaxis=plt.subplot(gs[0, 1])) pr.section(lat, depth, data2, plot=plot, ax=plt.subplot(gs[1, 0]), ax_args=plot['data2']['ax_args'], pcolor_args=plot['data2']['pcolor_args'], cblabel=units, cbaxis=plt.subplot(gs[1, 1])) pr.section(lat, depth, compdata, anom=True, rmse=True, pvalues=pvalues, alpha=plot['alpha'], plot=plot, ax=plt.subplot(gs[2, 0]), ax_args=plot['comp']['ax_args'], pcolor_args=plot['comp']['pcolor_args'], cblabel=units, cbaxis=plt.subplot(gs[2, 1])) plt.tight_layout() plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def colormap_comparison(plot): """ Loads and plots the data for a time averaged map. Loads and plots the data for comparison and plots the difference between the data and the comparison data. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting comparison map of ' + plot['variable'] # load data from netcdf file data, lon, lat, depth, units, _, weights = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) data = _depth_data(data, depth, plot) data2, _, _, _, _, _, _ = pl.dataload(plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) data2, _ = _trend_units(data2, units, plot) if plot['units']: units = plot['units'] if plot['alpha'] and plot['data_type'] == 'climatology': fulldata, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], depthneeded=[plot['plot_depth']]) fulldata2, _, _, _, _, _, _ = pl.dataload(plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], depthneeded=[plot['plot_depth']]) pvalues = ttest(fulldata, fulldata2) else: pvalues = None if plot['sigma'] and plot['data_type'] == 'trends': detrenddata, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype='detrend') detrenddata = _full_depth_data(detrenddata, depth, plot) siggrid = trend_significance(detrenddata, plot['sigma']) cvalues, _ = _trend_units(siggrid, units, plot) detrenddata, _, _, _, _, _, _ = pl.dataload(plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype='detrend') detrenddata = _full_depth_data(detrenddata, depth, plot) siggrid = trend_significance(detrenddata, plot['sigma']) c2values, _ = _trend_units(siggrid, units, plot) else: cvalues = None c2values = None try: compdata = data - data2 except: data2 = data2.transpose() compdata = data - data2 anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False _comp_pcolor(data, data2, plot, anom=anom) label1 = stats(plot, data, weights=weights, rmse=False) label2 = stats(plot, data2, weights=weights, rmse=False) label3 = stats(plot, compdata, weights=weights, rmse=True) dft.filltitle(plot) fig, (axl, axm, axr) = plt.subplots(3, 1, figsize=(8, 8)) # make plots of data, comparison data, data - comparison data pr.worldmap(plot['plot_projection'], lon, lat, data, plot=plot, ax=axl, ax_args=plot['data1']['ax_args'], pcolor_args=plot['data1']['pcolor_args'], cblabel=units, cvalues=cvalues, label=label1, **plot['plot_args']) pr.worldmap(plot['plot_projection'], lon, lat, data2, plot=plot, ax=axm, ax_args=plot['data2']['ax_args'], pcolor_args=plot['data2']['pcolor_args'], cblabel=units, cvalues=c2values, label=label2, **plot['plot_args']) pr.worldmap(plot['plot_projection'], lon, lat, compdata, pvalues=pvalues, alpha=plot['alpha'], anom=True, rmse=True, plot=plot, ax=axr, ax_args=plot['comp']['ax_args'], label=label3, pcolor_args=plot['comp']['pcolor_args'], cblabel=units, **plot['plot_args']) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def section_comparison(plot): """ Loads and plots the data for a time averaged section map. Loads and plots the data for comparison and plots the difference between the data and the comparison data. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting section comparison of ' + plot['variable'] data2, _, _, depth, _, _, _ = pl.dataload( plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], section=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) data, _, lat, depth, units, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], section=True, cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=list(depth)) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) data2, _ = _trend_units(data2, units, plot) if plot['units']: units = plot['units'] compdata = data - data2 dft.filltitle(plot) anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False _comp_pcolor(data, data2, compdata, plot, anom=anom) if plot['alpha'] and plot['data_type'] == 'climatology': fulldata, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], depthneeded=list(depth), section=True) fulldata2, _, _, _, _, _, _ = pl.dataload(plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], depthneeded=list(depth), section=True) pvalues = ttest(fulldata, fulldata2) else: pvalues = None # make plots of data, comparison data, data - comparison data fig = plt.figure(figsize=(6, 8)) gs = gridspec.GridSpec(3, 2, width_ratios=[20, 1]) pr.section(lat, depth, data, plot=plot, ax=plt.subplot(gs[0, 0]), ax_args=plot['data1']['ax_args'], pcolor_args=plot['data1']['pcolor_args'], cblabel=units, cbaxis=plt.subplot(gs[0, 1])) pr.section(lat, depth, data2, plot=plot, ax=plt.subplot(gs[1, 0]), ax_args=plot['data2']['ax_args'], pcolor_args=plot['data2']['pcolor_args'], cblabel=units, cbaxis=plt.subplot(gs[1, 1])) pr.section(lat, depth, compdata, anom=True, rmse=True, pvalues=pvalues, alpha=plot['alpha'], plot=plot, ax=plt.subplot(gs[2, 0]), ax_args=plot['comp']['ax_args'], pcolor_args=plot['comp']['pcolor_args'], cblabel=units, cbaxis=plt.subplot(gs[2, 1])) plt.tight_layout() plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name
def zonalmean(plot): """ Loads and plots a time average of the zonal means for each latitude. Loads and plots the data for comparison. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting zonal mean of ' + plot['variable'] data, _, lat, depth, units, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], section=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) if 'ylabel' not in plot['data1']['ax_args']: if plot['units']: plot['data1']['ax_args']['ylabel'] = plot['units'] else: plot['data1']['ax_args']['ylabel'] = units plot['units'] = units # get data at the correct depth plot['plot_depth'] = None if data.ndim > 1: plot['plot_depth'] = min(depth, key=lambda x: abs(x - plot['depth'])) try: depth_ind = np.where(np.round(depth) == plot['plot_depth'])[0][0] except: print('Failed to extract depth ' + plot['plot_depth'] + ' for ' + plot['variable']) depth_ind = 0 data = data[depth_ind, :] fig, ax = plt.subplots(1, 1, figsize=(8, 8)) dft.filltitle(plot) # make plot pr.zonalmean(lat, data, plot=plot, ax=ax, ax_args=plot['data1']['ax_args'], color='r', zorder=6) handles = [mpatches.Patch(color='r', label=plot['model_ID'])] # plot comparison data on the same axis if plot['cmip5_file']: plot['comp_model'] = 'cmip5' data = zonalmeandata(plot, plot['cmip5_file']) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='k', zorder=4) handles.append(mpatches.Patch(color='k', label='cmip5')) for o in plot['comp_obs']: plot['comp_model'] = o data = zonalmeandata(plot, plot['obs_file'][o]) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='b', zorder=5) handles.append(mpatches.Patch(color='b', label=str(plot['comp_model']))) for m in plot['comp_models']: plot['comp_model'] = model data = zonalmeandata(plot, plot['model_file'][m]) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='g', zorder=2) handles.append(mpatches.Patch(color='g', label=str(plot['comp_model']))) for i in plot['comp_ids']: plot['comp_model'] = i data = zonalmeandata(plot, plot['id_file'][i]) pr.zonalmean(lat, data, plot=plot, ax=ax, label=plot['comp_model'], color='y', zorder=3) handles.append(mpatches.Patch(color='y', label=str(plot['comp_model']))) for f in plot['cmip5_files']: try: plot['comp_model'] = 'cmip' data = zonalmeandata(plot, f) pr.zonalmean(lat, data, plot=plot, ax=ax, color='0.75', zorder=1) except: continue ax.legend(handles=handles, loc='center left', bbox_to_anchor=(1, 0.5)) plot_name = plotname(plot) savefigures(plot_name, **plot) return plot_name
def timeseries(plot): print 'plotting timeseries comparison of ' + plot['variable'] data, _, _, depth, units, time, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], fieldmean=True, yearmean=plot['yearmean'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args']) plot['data1']['ax_args']['xlabel'] = 'Time' if 'ylabel' not in plot['data1']['ax_args']: if plot['units']: plot['data1']['ax_args']['ylabel'] = plot['units'] else: plot['data1']['ax_args']['ylabel'] = units plot['units'] = units plot['plot_depth'] = None if data.ndim > 1: plot['plot_depth'] = min(depth, key=lambda x: abs(x - plot['depth'])) try: depth_ind = np.where(np.round(depth) == plot['plot_depth'])[0][0] except: print('Failed to extract depth ' + plot['plot_depth'] + ' for ' + plot['variable']) depth_ind = 0 data = data[:, depth_ind] fig, ax = plt.subplots(1, 1, figsize=(8, 8)) dft.filltitle(plot) # make plot pr.timeseries(time, data, plot=plot, ax=ax, label=plot['model_ID'], ax_args=plot['data1']['ax_args'], color='r', zorder=6) handles = [mpatches.Patch(color='r', label=plot['model_ID'])] # plot comparison data on the same axis if plot['cmip5_file']: plot['comp_model'] = 'cmip5' data, x = _timeseries_data(plot, plot['cmip5_file']) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='k', zorder=4) handles.append(mpatches.Patch(color='k', label=str(plot['comp_model']))) for o in plot['comp_obs']: plot['comp_model'] = o data, x = _timeseries_data(plot, plot['obs_file'][o]) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='b', zorder=5) handles.append(mpatches.Patch(color='b', label=str(plot['comp_model']))) for model in plot['comp_models']: plot['comp_model'] = model data, x = _timeseries_data(plot, plot['model_file'][model]) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='g', zorder=2) handles.append(mpatches.Patch(color='g', label=str(plot['comp_model']))) for i in plot['comp_ids']: plot['comp_model'] = i data, x = timeseriesdata(plot, plot['id_file'][i], depth) pr.timeseries(x, data, plot=plot, ax=ax, label=plot['comp_model'], ax_args=plot['data1']['ax_args'], color='y', zorder=3) handles.append(mpatches.Patch(color='y', label=str(plot['comp_model']))) for f in plot['cmip5_files']: try: plot['comp_model'] = 'cmip' data, x = _timeseries_data(plot, f) pr.timeseries(x, data, plot=plot, ax=ax, label=None, ax_args=plot['data1']['ax_args'], color='0.75', zorder=1) except: continue ax.legend(handles=handles, loc='center left', bbox_to_anchor=(1, 0.5)) ax.yaxis.set_major_formatter(ticker.ScalarFormatter(useOffset=False)) plot_name = plotname(plot) savefigures(plot_name, **plot) return plot_name
def taylor(plot): labelled_stats = [] unlabelled_stats = [] obs = plot['obs_file'].iterkeys().next() plot['plot_depth'] = plot['depths'][0] plot['stats'] = {} for i, d in enumerate(plot['depths']): refdata, _, _, depth, units, _, weights = pl.dataload(plot['obs_file'][obs], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[d]) refstd = weighted_std(refdata, weights) stats_dictionary(plot, obs, d, refstd, 1, 1) data, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=depth) corrcoef, _, std = weighted_correlation(refdata, data, weights) labelled_stats.append({'name': plot['model_ID'], 'corrcoef': corrcoef, 'std': std / refstd, 'color': 'red', 'marker': '$%d$' % (i+1), 'zorder': 3}) stats_dictionary(plot, plot['ifile'], d, std, std / refstd, corrcoef) if plot['cmip5_file']: plot['comp_model'] = 'cmip5' labelled_stats.append(taylor_load(plot, plot['cmip5_file'], depth, '$%d$' % (i+1), 'k', refdata, weights)) for m in plot['comp_models']: plot['comp_model'] = model labelled_stats.append(taylor_load(plot, plot['model_file'][m], depth, '$%d$' % (i+1), 'g', refdata, weights)) for c in plot['comp_ids']: plot['comp_model'] = c labelled_stats.append(taylor_load(plot, plot['id_file'][c], depth, '$%d$' % (i+1), 'y', refdata, weights)) for f in plot['cmip5_files']: plot['comp_model'] = 'cmip' try: unlabelled_stats.append(taylor_load(plot, f, depth, '$%d$' % (i+1), '0.75', refdata, weights)) except: continue depthlist = [str(i + 1) + ': ' + str(d) for i, d in enumerate(plot['depths'])] label = ' '.join(depthlist) if len(plot['depths']) <= 1: for l in labelled_stats: l['marker'] = '.' for l in unlabelled_stats: l['marker'] = '.' label = None dft.filltitle(plot) pr.taylor_from_stats(labelled_stats, unlabelled_stats, obs_label=obs, label=label, ax_args=plot['data1']['ax_args']) # plot['stats'] = {'obserations': {'standard deviation': float(refstd)}} plot_name = plotname(plot) plt.tight_layout() savefigures(plot_name, **plot) if not plot['units']: plot['units'] = units plot['comp_file'] = plot['obs_file'] return plot_name
def multivariable_taylor(plot): if 'depth' not in plot: plot['depth'] = 0 labelled_stats = [] obs = plot['obs_file'].iterkeys().next() plot['stats'] = {} colors = plt.matplotlib.cm.jet(np.linspace(0,1,len(plot['extra_variables']) + 1)) refdata, _, _, depth, units, _, weights = pl.dataload(plot['obs_file'][obs], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) refstd = weighted_std(refdata, weights) data, _, _, _, _, _, _ = pl.dataload(plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) corrcoef, _, std = weighted_correlation(refdata, data, weights) labelled_stats.append({'name': plot['variable'], 'corrcoef': corrcoef, 'std': std / refstd, 'color': colors[0], 'marker': '.', 'zorder': 3}) stats_dictionary(plot, plot['ifile'], plot['depth'], std, std / refstd, corrcoef) for i, var in enumerate(plot['extra_variables']): refdata, _, _, depth, units, _, weights = pl.dataload(plot['extra_obs_files'][var], var, plot['comp_dates'], realm=plot['extra_realm_cats'][var], scale=plot['extra_comp_scales'][i], shift=plot['extra_comp_shifts'][i], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) refstd = weighted_std(refdata, weights) data, _, _, _, _, _, _ = pl.dataload(plot['extra_ifiles'][var], var, plot['dates'], realm=plot['realm_cat'], scale=plot['extra_scales'][i], shift=plot['extra_shifts'][i], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['depth']]) corrcoef, _, std = weighted_correlation(refdata, data, weights) labelled_stats.append({'name': var, 'corrcoef': corrcoef, 'std': std / refstd, 'color': colors[i + 1], 'marker': '.', 'zorder': 3}) stats_dictionary(plot, plot['extra_ifiles'][var], plot['depth'], std, std / refstd, corrcoef) if not plot['data1']['title_flag']: plot['data1']['ax_args']['title'] = plot['data_type'] + ' ' + plot['model_ID'] + ' ' + plot['dates']['start_date'] + ' - ' + plot['dates']['end_date'] pr.taylor_from_stats(labelled_stats, [], obs_label='observations', label=None, ax_args=plot['data1']['ax_args']) plot_name = plotname(plot) plt.tight_layout() savefigures(plot_name, **plot) if not plot['units']: plot['units'] = '--' plot['comp_file'] = plot['obs_file'] return plot_name
def colormap_comparison(plot): """ Loads and plots the data for a time averaged map. Loads and plots the data for comparison and plots the difference between the data and the comparison data. Parameters ---------- plot : dictionary func : a method that will plot the data on a specified map Returns ------- string : name of the plot """ print 'plotting comparison map of ' + plot['variable'] # load data from netcdf file data, lon, lat, depth, units, _, weights = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], gridweights=True, external_function=plot['external_function'], external_function_args=plot['external_function_args']) data = _depth_data(data, depth, plot) data2, _, _, _, _, _, _ = pl.dataload( plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype=plot['data_type'], cdostring=plot['cdostring'], external_function=plot['external_function'], external_function_args=plot['external_function_args'], depthneeded=[plot['plot_depth']]) if plot['data_type'] == 'trends': data, units = _trend_units(data, units, plot) data2, _ = _trend_units(data2, units, plot) if plot['units']: units = plot['units'] if plot['alpha'] and plot['data_type'] == 'climatology': fulldata, _, _, _, _, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], depthneeded=[plot['plot_depth']]) fulldata2, _, _, _, _, _, _ = pl.dataload( plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], depthneeded=[plot['plot_depth']]) pvalues = ttest(fulldata, fulldata2) else: pvalues = None if plot['sigma'] and plot['data_type'] == 'trends': detrenddata, _, _, _, _, _, _ = pl.dataload( plot['ifile'], plot['variable'], plot['dates'], realm=plot['realm_cat'], scale=plot['scale'], shift=plot['shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['seasons'], datatype='detrend') detrenddata = _full_depth_data(detrenddata, depth, plot) siggrid = trend_significance(detrenddata, plot['sigma']) cvalues, _ = _trend_units(siggrid, units, plot) detrenddata, _, _, _, _, _, _ = pl.dataload( plot['comp_file'], plot['variable'], plot['comp_dates'], realm=plot['realm_cat'], scale=plot['comp_scale'], shift=plot['comp_shift'], remapf=plot['remap'], remapgrid=plot['remap_grid'], seasons=plot['comp_seasons'], datatype='detrend') detrenddata = _full_depth_data(detrenddata, depth, plot) siggrid = trend_significance(detrenddata, plot['sigma']) c2values, _ = _trend_units(siggrid, units, plot) else: cvalues = None c2values = None try: compdata = data - data2 except: data2 = data2.transpose() compdata = data - data2 anom = True if plot['divergent'] or plot['data_type'] == 'trends' else False _comp_pcolor(data, data2, compdata, plot, anom=anom) label1 = stats(plot, data, weights=weights, rmse=False) label2 = stats(plot, data2, weights=weights, rmse=False) label3 = stats(plot, compdata, weights=weights, rmse=True) dft.filltitle(plot) fig, (axl, axm, axr) = plt.subplots(3, 1, figsize=(8, 8)) # make plots of data, comparison data, data - comparison data pr.worldmap(plot['plot_projection'], lon, lat, data, plot=plot, ax=axl, ax_args=plot['data1']['ax_args'], pcolor_args=plot['data1']['pcolor_args'], cblabel=units, cbbounds=plot['data1']['cbbounds'], cvalues=cvalues, label=label1, **plot['plot_args']) pr.worldmap(plot['plot_projection'], lon, lat, data2, plot=plot, ax=axm, ax_args=plot['data2']['ax_args'], pcolor_args=plot['data2']['pcolor_args'], cblabel=units, cbbounds=plot['data2']['cbbounds'], cvalues=c2values, label=label2, **plot['plot_args']) pr.worldmap(plot['plot_projection'], lon, lat, compdata, pvalues=pvalues, alpha=plot['alpha'], anom=True, rmse=True, plot=plot, ax=axr, ax_args=plot['comp']['ax_args'], label=label3, pcolor_args=plot['comp']['pcolor_args'], cblabel=units, cbbounds=plot['comp']['cbbounds'], **plot['plot_args']) plot_name = plotname(plot) savefigures(plot_name, **plot) plot['units'] = units return plot_name