import mmcv import data_loader from config_loader import dbg_config import model """ Load config """ checkpoint_dir = dbg_config.checkpoint_dir batch_size = dbg_config.batch_size learning_rate = dbg_config.learning_rate tscale = dbg_config.tscale feature_dim = dbg_config.feature_dim epoch_num = dbg_config.epoch_num """ Initialize map mask """ mask = data_loader.gen_mask(tscale) mask = np.expand_dims(np.expand_dims(mask, 0), -1) mask = tf.convert_to_tensor(mask, tf.float32) def binary_logistic_loss(gt_scores, pred_anchors, label_smoothing=0, weight_balance=True): """ Calculate weighted binary logistic loss :param gt_scores: gt scores tensor :param pred_anchors: prediction score tensor :param label_smoothing: float :param weight_balance: bool :return: loss output tensor
from torch.utils.data import DataLoader """ Load config """ from config_loader import dbg_config checkpoint_dir = dbg_config.checkpoint_dir batch_size = dbg_config.batch_size learning_rate = dbg_config.learning_rate tscale = dbg_config.tscale feature_dim = dbg_config.feature_dim epoch_num = dbg_config.epoch_num """ Initialize map mask """ mask = gen_mask(tscale) mask = np.expand_dims(np.expand_dims(mask, 0), 1) mask = torch.from_numpy(mask).float().requires_grad_(False).cuda() tmp_mask = mask.repeat(batch_size, 1, 1, 1).requires_grad_(False) tmp_mask = tmp_mask > 0 def binary_logistic_loss(gt_scores, pred_anchors): """ Calculate weighted binary logistic loss :param gt_scores: gt scores tensor :param pred_anchors: prediction score tensor :return: loss output tensor """ gt_scores = gt_scores.view(-1) pred_anchors = pred_anchors.view(-1)