def get_mf_pca_df(rows=5): """ function get_mf_pca_df(rows=5) shows some results that were predicted for matrix+pca features by all methods """ mf_pca_df = load_dataframe('matrix_pca_df') return mf_pca_df[:rows]
def get_haars_df(rows=5): """ function get_haars_df(rows=5) shows some results that were predicted for haars features by all methods """ haars_df = load_dataframe('haars_df') return haars_df[:rows]
def get_haars_net_df(rows=5, exp_num=1): """ function get_haars_net_df(rows=5, exp_num=1) shows some results that were predicted for haars features by neural networks at first or second experiment """ haars_net_df = load_dataframe('haars_net_df' + '_exp_num_' + str(exp_num)) return haars_net_df[:rows]
def calc_accuracy(): """ function calc_accuracy() calculate accuracy and returns dataframe with results """ col_list = COL_LIST col_list.append('voting (cols [1-5) )') haars_df = load_dataframe('haars_df') matrix_df = load_dataframe('matrix_df') matrix_pca_df = load_dataframe('matrix_pca_df') accuracy_df = pd.DataFrame(FEATURES_LIST, index=['1', '2', '3'], columns=['features']) for i, cols in enumerate(col_list): accuracy_df[cols] = [accuracy_score(haars_df['y_test'], haars_df[cols]), accuracy_score(matrix_df['y_test'], matrix_df[cols]), accuracy_score(matrix_pca_df['y_test'], matrix_pca_df[cols])] return accuracy_df[:]
def show_wrong_classified_obj(): """ function show_wrong_classified_obj() shows some examples ml-models gave false positive or false negative detections """ indexes = np.arange(1, 96, 32) col_list = COL_LIST col_list.append('voting (cols [1-5) )') x_test = load_sample('x_test') fig = plt.figure(figsize=(8, 60)) ax = [] plt.rcParams.update({'font.size': 6}) np.random.seed(RANDOM_SEED) plotting(load_dataframe('haars_df'), 'hf', indexes[0], col_list, fig, ax, x_test) plotting(load_dataframe('matrix_df'), 'mf', indexes[1], col_list, fig, ax, x_test) plotting(load_dataframe('matrix_pca_df'), 'mf_pca', indexes[2], col_list, fig, ax, x_test) plt.show()
def get_time_df(): """ function get_time_df() returns dataframe with time """ time_part1_df = load_dataframe('time_df_part1') return time_part1_df[:]
def get_net_time_df(exp_num=1): """ function get_net_time_df(exp_num=1) returns dataframe with time """ net_time_df = load_dataframe('net_time_df' + '_exp_num_' + str(exp_num)) return net_time_df[:]